Structural and evaporative evolutions in desiccating sessile drops of blood

We report an experimental investigation of the drying of a deposited drop of whole blood. Flow motion, adhesion, gelation, and fracturation all occur during the evaporation of this complex matter, leading to a final typical pattern. Two distinct regimes of evaporation are highlighted: the first is d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2011-07, Vol.84 (1 Pt 1), p.011603-011603, Article 011603
Hauptverfasser: Sobac, B, Brutin, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report an experimental investigation of the drying of a deposited drop of whole blood. Flow motion, adhesion, gelation, and fracturation all occur during the evaporation of this complex matter, leading to a final typical pattern. Two distinct regimes of evaporation are highlighted: the first is driven by convection, diffusion, and gelation in a liquid phase, whereas the second, with a much slower rate of evaporation, is characterized by the mass transport of the liquid left over in the gellified biocomponent matter. A diffusion model of the drying process allows a prediction of the transition between these two regimes of evaporation. Moreover, the formation of cracks and other events occurring during the drying are examined and shown to be driven by critical solid mass concentrations.
ISSN:1539-3755
1550-2376
DOI:10.1103/physreve.84.011603