Dynamics of the flowfield generated by the interaction of twin inclined jets of variable temperatures with an oncoming crossflow
The present paper examines the common configuration of “twin inclined jets in crossflow” that is widely present in several industrial and academic, small and large-scale applications. It is particularly found in aerodynamic and engineering applications like VTOL aircrafts, the combustion mixing proc...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2014-02, Vol.50 (2), p.253-274 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present paper examines the common configuration of “twin inclined jets in crossflow” that is widely present in several industrial and academic, small and large-scale applications. It is particularly found in aerodynamic and engineering applications like VTOL aircrafts, the combustion mixing process and other chemical chambers. It can also be found in some domestic applications like chimney stacks or water discharge piping systems in rivers and seas. The twin jets considered in this work are elliptic as inclined with a 60° angle and arranged inline with the oncoming crossflow according to a jet spacing of three diameters. They are examined experimentally in a wind tunnel. The corresponding data is tracked by means of the particle image velocimetry technique in order to obtain the different instantaneous and mean dynamic features (different velocity components, vortices, etc.). The same case is numerically reproduced by the resolution of the Navier–Stokes equations by means of the finite volume method together with the Reynolds stress model second order turbulent closure model. A non-uniform mesh system tightened close to the emitting nozzles is also adopted. The comparison of the measured and calculated data gave a satisfying agreement. Further assumptions are adopted later in order to improve the examined configuration: a non-reactive fume is injected within the discharged jets and the jets’ temperature is varied with reference to a constant mainstream temperature. Our aim is to evaluate precisely the impact of this temperature difference on the flow field, particularly on the dynamics of the jets in a crossflow. This parameter, namely the temperature difference, proved mainly to accelerate the discharged jet plumes in the direction of the main flow, which enhanced the mixing, particularly in the longitudinal direction. The mixing in the other directions was also increased due to the weaker density of the jets, which enabled them to progress relatively unhindered before undergoing the impact of the crossflow. |
---|---|
ISSN: | 0947-7411 1432-1181 |
DOI: | 10.1007/s00231-013-1241-9 |