Effect of the storage tank thermal insulation on the thermal performance of an integrated collector storage solar water heater (ICSSWH)
The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using CFD simulations. Based on the good agreement between the numerical results and the experimental data from literature, we propose a geometrical change allowing limiting the main disadvanta...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2014-10, Vol.50 (10), p.1335-1341 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using CFD simulations. Based on the good agreement between the numerical results and the experimental data from literature, we propose a geometrical change allowing limiting the main disadvantage of this solar system which is its high night losses due to the non-insulated storage tank surface. A second 3D CFD model of an ICSSWH in which the storage tank is partially insulated is developed and three values of this tank thermal insulated fraction are studied. Numerical results show that the partially insulated tank based ICSSWH presents lower thermal losses during the night and this night thermal losses coefficient is reduced from 14.6 to 11.64 W K
−1
for the tank thermal insulation fraction τ = 1/4. Similarly, the modified system presents the advantage of its lower thermal losses even during the day. Regarding the thermal production, it is seen that the modified system presents higher water temperature at night and that for all the tank thermal insulation fractions. Concerning the operation of this modified system during the day, the water temperature is lower during the day and that up to 16 h but the water temperature which achieves 324 K for the storage tank thermal insulation fraction τ = 1/8 still sufficiently high to satisfy a family hot water needs. |
---|---|
ISSN: | 0947-7411 1432-1181 |
DOI: | 10.1007/s00231-014-1345-x |