Photochemical activity of Titan’s low-altitude condensed haze

Titan, the largest moon of Saturn and similar to Earth in many aspects, has unique orange-yellow colour that comes from its atmospheric haze, whose formation and dynamics are far from well understood. Present models assume that Titan’s tholin-like haze formation occurs high in atmosphere through gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013-04, Vol.4 (1), p.1648-1648, Article 1648
Hauptverfasser: Gudipati, Murthy S., Jacovi, Ronen, Couturier-Tamburelli, Isabelle, Lignell, Antti, Allen, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titan, the largest moon of Saturn and similar to Earth in many aspects, has unique orange-yellow colour that comes from its atmospheric haze, whose formation and dynamics are far from well understood. Present models assume that Titan’s tholin-like haze formation occurs high in atmosphere through gas-phase chemical reactions initiated by high-energy solar radiation. Here we address an important question: Is the lower atmosphere of Titan photochemically active or inert? We demonstrate that indeed tholin-like haze formation could occur on condensed aerosols throughout the atmospheric column of Titan. Detected in Titan’s atmosphere, dicyanoacetylene (C 4 N 2 ) is used in our laboratory simulations as a model system for other larger unsaturated condensing compounds. We show that C 4 N 2 ices undergo condensed-phase photopolymerization (tholin formation) at wavelengths as long as 355 nm pertinent to solar radiation reaching a large portion of Titan’s atmosphere, almost close to the surface. The atmosphere of Titan, Saturn’s largest moon, consists of orange-yellow haze, but its formation and dynamics are not well understood. Here laboratory studies show that Titan’s lower atmosphere is photochemically active and the formation of complex prebiotic precursor molecules occurs at lower altitudes.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms2649