Recent Advances in Non-stationary Signal Processing Based on the Concept of Recurrence Plot Analysis
This work concerns the analysis of non-stationary signals using Recurrence Plot Analysis concept. Non-stationary signals are present in real-life phenomena such as underwater mammal’s vocalizations, human speech, ultrasonic monitoring, detection of electrical discharges, transients, wireless communi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work concerns the analysis of non-stationary signals using Recurrence Plot Analysis concept. Non-stationary signals are present in real-life phenomena such as underwater mammal’s vocalizations, human speech, ultrasonic monitoring, detection of electrical discharges, transients, wireless communications, etc. This is why a large number of approaches for non-stationary signal analysis are developed such as wavelet analysis, higher order statistics, or quadratic time-frequency analysis. Following the context, the methods defined around the concept of Recurrence Plot Analysis (RPA) constitute an interesting way of analyzing non-stationary signals and, particularly, the transient ones. Starting from the phase space and the recurrence matrix, new approaches [the angular distance, recurrence-based autocorrelation function (ACF), average-magnitude difference function (AMDF) and time-distributed recurrence (TDR)] are introduced in order to extract information about the non-stationary signals, specific to different applications. Comparisons with existing analysis methods are presented, proving the interest and the potential of the RPA-based approaches. |
---|---|
ISSN: | 2194-1009 2194-1017 |
DOI: | 10.1007/978-3-319-09531-8_5 |