Yano's Conjecture for Two-Puiseux-Pairs irreducible Plane Curve Singularities
In 1982, Tamaki Yano proposed a conjecture predicting the b- exponents of an irreducible plane curve singularity germ which is generic in its equisingularity class. In this article we prove the conjecture for the case in which the irreducible germ has two Puiseux pairs and its algebraic monodromy ha...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2017, Vol.53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1982, Tamaki Yano proposed a conjecture predicting the b- exponents of an irreducible plane curve singularity germ which is generic in its equisingularity class. In this article we prove the conjecture for the case in which the irreducible germ has two Puiseux pairs and its algebraic monodromy has distinct eigenvalues. This hypothesis on the monodromy implies that the b-exponents coincide with the opposite of the roots of the Bernstein polynomial, and we compute the roots of the Bernstein polynomial. |
---|---|
ISSN: | 0034-5318 1663-4926 |