Surface Control of Doping in Self-Doped Nanocrystals
Self-doped nanocrystals raise great interest for infrared (IR) optoelectronics because their optical properties span from near to far IR. However, their integration for photodetection requires a fine understanding of the origin of their doping and also a way to control the magnitude of the doping. I...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-10, Vol.8 (40), p.27122-27128 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-doped nanocrystals raise great interest for infrared (IR) optoelectronics because their optical properties span from near to far IR. However, their integration for photodetection requires a fine understanding of the origin of their doping and also a way to control the magnitude of the doping. In this paper, we demonstrate that a fine control of the doping level between 0.1 and 2 electrons per dot is obtained through ligand exchange. The latter affects not only the interparticle coupling but also their optical properties because of the band-shift resulting from the presence of surface dipoles. We demonstrate that self-doping is a bulk process and that surface dipoles can control its magnitude. We additionally propose a model to quantify the dipole involved with each ligand. We eventually use the ligand design rule previously evidenced to build a near-infrared photodetector on a soft and transparent substrate. The latter significantly improves the performance compared to previously reported colloidal quantum dot-based photodetectors on plastic substrates operated in the telecom wavelength range. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b09530 |