Counting curves, and the stable length of currents

Let $\gamma_0$ be a curve on a surface $\Sigma$ of genus $g$ and with $r$ boundary components and let $\pi_1(\Sigma)\curvearrowright X$ be a discrete and cocompact action on some metric space. We study the asymptotic behavior of the number of curves $\gamma$ of type $\gamma_0$ with translation lengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2020-01, Vol.22 (6), p.1675-1702
Hauptverfasser: Erlandsson, Viveka, Parlier, Hugo, Souto, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\gamma_0$ be a curve on a surface $\Sigma$ of genus $g$ and with $r$ boundary components and let $\pi_1(\Sigma)\curvearrowright X$ be a discrete and cocompact action on some metric space. We study the asymptotic behavior of the number of curves $\gamma$ of type $\gamma_0$ with translation length at most $L$ on $X$. For example, as an application, we derive that for any finite generating set $S$, of $\pi_1(\Sigma)$ the limit $$\lim_{L\to\infty}\frac 1{L^{6g-6+2r}}|\{\gamma \: \text {of type} \: \gamma_0 \: \text {with} \: S\text {-translation length} \: \le L\}|$$ exists and is positive. The main new technical tool is that the function which associates to each curve its stable length with respect to the action on $X$ extends to a (unique) continuous and homogenous function on the space of currents. We prove that this is indeed the case for any action of a torsion free hyperbolic group.
ISSN:1435-9855
1435-9863
DOI:10.4171/JEMS/953