Counting curves, and the stable length of currents
Let $\gamma_0$ be a curve on a surface $\Sigma$ of genus $g$ and with $r$ boundary components and let $\pi_1(\Sigma)\curvearrowright X$ be a discrete and cocompact action on some metric space. We study the asymptotic behavior of the number of curves $\gamma$ of type $\gamma_0$ with translation lengt...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2020-01, Vol.22 (6), p.1675-1702 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\gamma_0$ be a curve on a surface $\Sigma$ of genus $g$ and with $r$ boundary components and let $\pi_1(\Sigma)\curvearrowright X$ be a discrete and cocompact action on some metric space. We study the asymptotic behavior of the number of curves $\gamma$ of type $\gamma_0$ with translation length at most $L$ on $X$. For example, as an application, we derive that for any finite generating set $S$, of $\pi_1(\Sigma)$ the limit $$\lim_{L\to\infty}\frac 1{L^{6g-6+2r}}|\{\gamma \: \text {of type} \: \gamma_0 \: \text {with} \: S\text {-translation length} \: \le L\}|$$ exists and is positive. The main new technical tool is that the function which associates to each curve its stable length with respect to the action on $X$ extends to a (unique) continuous and homogenous function on the space of currents. We prove that this is indeed the case for any action of a torsion free hyperbolic group. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/JEMS/953 |