Fusion of Perception and V2P Communication Systems for Safety of Vulnerable Road Users
With cooperative intelligent transportation systems (C-ITS), vulnerable road users (VRU) safety can be enhanced by multiple means.On one hand, perception systems are based on embedded sensors to protect VRUs. However, such systems may fail due to the sensors' visibility conditions and imprecisi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With cooperative intelligent transportation systems (C-ITS), vulnerable road users (VRU) safety can be enhanced by multiple means.On one hand, perception systems are based on embedded sensors to protect VRUs. However, such systems may fail due to the sensors' visibility conditions and imprecision. On the other hand, Vehicle-to-Pedestrian (V2P) communication can contribute to the VRU safety by allowing vehicles and pedestrians to exchange information. This solution is, however, largely affected by the reliability of the exchanged information, which most generally is the GPS data. Since perception and communication have complementary features, we can expect that a fusion between these two approaches can be a solution to the VRU safety. In this work, we propose a cooperative system that combines the outputs of communication and perception. After introducing theoretical models of both individual approaches, we develop a probabilistic association between perception and V2P communication information by means of multi-hypothesis tracking (MHT). Experimental studies are conducted to demonstrate the applicability of this approach in real-world environments. Our results show that the cooperative VRU protection system can benefit of the redundancy coming from the perception and communication technologies both in line-of-sight (LOS) and non-LOS (NLOS) conditions. We establish that the performances of this system are influenced by the classification performances of the perception system and by the accuracy of the GPS positioning transmitted by the communication system. |
---|---|
ISSN: | 1524-9050 |