Limitations in ionization-induced compression of femtosecond laser pulses due to spatio-temporal couplings

It was recently proposed that ionization-induced self-compression could be used as an effective method to further compress femtosecond laser pulses propagating freely in a gas jet [He et al., Phys. Rev. Lett. 113, 263904 2014]. Here, we address the question of the homogeneity of the self-compression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2016-05, Vol.24 (9), p.9693-9705
Hauptverfasser: Beaurepaire, B, Guénot, D, Vernier, A, Böhle, F, Perrier, M, Jullien, A, Lopez-Martens, R, Lifschitz, A, Faure, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It was recently proposed that ionization-induced self-compression could be used as an effective method to further compress femtosecond laser pulses propagating freely in a gas jet [He et al., Phys. Rev. Lett. 113, 263904 2014]. Here, we address the question of the homogeneity of the self-compression process and show experimentally that homogeneous self-compression down to 12fs can be obtained by finding the appropriate focusing geometry for the laser pulse. Simulations are used to reproduce the experimental results and give insight into the self-compression process and its limitations. Simulations suggest that the ionization process induces spatio-temporal couplings which lengthen the pulse duration at focus, possibly making this method ineffective for increasing the laser peak intensity.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.24.009693