Volume of minimal hypersurfaces in manifolds with nonnegative Ricci curvature
We establish a min-max estimate on the volume width of a closed Riemannian manifold with nonnegative Ricci curvature. More precisely, we show that every closed Riemannian manifold with nonnegative Ricci curvature admits a PL Morse function whose level set volume is bounded in terms of the volume of...
Gespeichert in:
Veröffentlicht in: | Journal für die reine und angewandte Mathematik 2017-10, Vol.2017 (731), p.1-19 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a min-max estimate on the volume width of a closed Riemannian manifold with nonnegative Ricci curvature.
More precisely, we show that every closed Riemannian manifold with nonnegative Ricci curvature admits a PL Morse function whose level set volume is bounded in terms of the volume of the manifold.
As a consequence of this sweep-out estimate, there exists an embedded, closed (possibly singular) minimal hypersurface whose volume is bounded in terms of the volume of the manifold. |
---|---|
ISSN: | 0075-4102 1435-5345 |
DOI: | 10.1515/crelle-2014-0147 |