Towards an explicit local Jacquet–Langlands correspondence beyond the cuspidal case

We show how the modular representation theory of inner forms of general linear groups over a non-Archimedean local field can be brought to bear on the complex theory in a remarkable way. Let $\text{F}$ be a non-Archimedean locally compact field of residue characteristic $p$ , and let $\text{G}$ be a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2019-10, Vol.155 (10), p.1853-1887
Hauptverfasser: Sécherre, Vincent, Stevens, Shaun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how the modular representation theory of inner forms of general linear groups over a non-Archimedean local field can be brought to bear on the complex theory in a remarkable way. Let $\text{F}$ be a non-Archimedean locally compact field of residue characteristic $p$ , and let $\text{G}$ be an inner form of the general linear group $\text{GL}_{n}(\text{F})$ for $n\geqslant 1$ . We consider the problem of describing explicitly the local Jacquet–Langlands correspondence $\unicode[STIX]{x1D70B}\mapsto _{\text{JL}}\unicode[STIX]{x1D70B}$ between the complex discrete series representations of $\text{G}$ and $\text{GL}_{n}(\text{F})$ , in terms of type theory. We show that the congruence properties of the local Jacquet–Langlands correspondence exhibited by A. Mínguez and the first author give information about the explicit description of this correspondence. We prove that the problem of the invariance of the endo-class by the Jacquet–Langlands correspondence can be reduced to the case where the representations $\unicode[STIX]{x1D70B}$ and $_{\text{JL}}\unicode[STIX]{x1D70B}$ are both cuspidal with torsion number $1$ . We also give an explicit description of the Jacquet–Langlands correspondence for all essentially tame discrete series representations of $\text{G}$ , up to an unramified twist, in terms of admissible pairs, generalizing previous results by Bushnell and Henniart. In positive depth, our results are the first beyond the case where  $\unicode[STIX]{x1D70B}$ and $_{\text{JL}}\unicode[STIX]{x1D70B}$ are both cuspidal.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X19007486