Investigation of a novel fluorinated surfactant-based system for the design of spherical wormhole-like mesoporous silica

[Display omitted] In contrast to hydrogenated based systems that led to many studies, fluorinated surfactants have been little reported. Thanks to their high chemical and thermal stability, these compounds are considered as suitable candidates for the synthesis of porous materials with an enhanced h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2017-02, Vol.487, p.310-319
Hauptverfasser: Riachy, Philippe, Lopez, Gérald, Emo, Mélanie, Stébé, Marie-José, Blin, Jean-Luc, Ameduri, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In contrast to hydrogenated based systems that led to many studies, fluorinated surfactants have been little reported. Thanks to their high chemical and thermal stability, these compounds are considered as suitable candidates for the synthesis of porous materials with an enhanced hydrothermal stability. This study reports the synthesis of a new fluorinated surfactant, 2-trifluoromethyl-7,7,8,8,9,9,10,10,11,11,12,12,12-tridecafluoro-4-thia-1-dodecanoic acid (FSC) obtained from the thiol-ene radical addition of 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanethiol onto 2-trifluoromethyl acrylic acid in 85% yield. In the aim of achieving micelles in water to design mesoporous materials according to the cooperative templating mechanism, FSC was modified with water-soluble telechelic diamine (Jeffamine) ED-600. The modified surfactant was deeply characterized by spectroscopic methods and the FSC-Jeffamine ED-600 micellar system was used as porogen to prepare mesoporous materials via the cooperative templating mechanism. Spherical wormhole-like mesostructured silica materials of high specific surface area (850m2/g) and homogeneous pore size distribution (ca. 3.4nm) were obtained by conveniently adjusting the porogen/silica molar ratio and the hydrothermal conditions.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2016.10.053