On Shapley Value for Measuring Importance of Dependent Inputs
This paper makes the case for using Shapley value to quantify the importance of random input variables to a function. Alternatives based on the ANOVA decomposition can run into conceptual and computational problems when the input variables are dependent. Our main goal here is to show that Shapley va...
Gespeichert in:
Veröffentlicht in: | SIAM/ASA journal on uncertainty quantification 2017-01, Vol.5 (1), p.986-1002 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper makes the case for using Shapley value to quantify the importance of random input variables to a function. Alternatives based on the ANOVA decomposition can run into conceptual and computational problems when the input variables are dependent. Our main goal here is to show that Shapley value removes the conceptual problems. We do this with some simple examples where Shapley value leads to intuitively reasonable nearly closed form values. |
---|---|
ISSN: | 2166-2525 2166-2525 |
DOI: | 10.1137/16M1097717 |