On Shapley Value for Measuring Importance of Dependent Inputs

This paper makes the case for using Shapley value to quantify the importance of random input variables to a function. Alternatives based on the ANOVA decomposition can run into conceptual and computational problems when the input variables are dependent. Our main goal here is to show that Shapley va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM/ASA journal on uncertainty quantification 2017-01, Vol.5 (1), p.986-1002
Hauptverfasser: Owen, Art B., Prieur, Clémentine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper makes the case for using Shapley value to quantify the importance of random input variables to a function. Alternatives based on the ANOVA decomposition can run into conceptual and computational problems when the input variables are dependent. Our main goal here is to show that Shapley value removes the conceptual problems. We do this with some simple examples where Shapley value leads to intuitively reasonable nearly closed form values.
ISSN:2166-2525
2166-2525
DOI:10.1137/16M1097717