Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations
We work in the setting of the whole plane (and possibly the whole three-dimensional space in the Gross-Pitaevskii case), in the asymptotic limit where \varepsilon , the characteristic lengthscale of the vortices, tends to 0, and in a situation where the number of vortices N_\varepsilon blows up as \...
Gespeichert in:
Veröffentlicht in: | Journal of the American Mathematical Society 2017-07, Vol.30 (3), p.713-768 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We work in the setting of the whole plane (and possibly the whole three-dimensional space in the Gross-Pitaevskii case), in the asymptotic limit where \varepsilon , the characteristic lengthscale of the vortices, tends to 0, and in a situation where the number of vortices N_\varepsilon blows up as \varepsilon \to 0. The requirements are that N_\varepsilon should blow up faster than \vert\mathrm {log } \, \varepsilon \vert in the Gross-Pitaevskii case, and at most like \vert\mathrm {log } \, \varepsilon \vert in the parabolic case. Both results assume a well-prepared initial condition and regularity of the limiting initial data, and use the regularity of the solution to the limiting equations. |
---|---|
ISSN: | 0894-0347 1088-6834 |
DOI: | 10.1090/jams/872 |