Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations

We work in the setting of the whole plane (and possibly the whole three-dimensional space in the Gross-Pitaevskii case), in the asymptotic limit where \varepsilon , the characteristic lengthscale of the vortices, tends to 0, and in a situation where the number of vortices N_\varepsilon blows up as \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Mathematical Society 2017-07, Vol.30 (3), p.713-768
1. Verfasser: SERFATY, SYLVIA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We work in the setting of the whole plane (and possibly the whole three-dimensional space in the Gross-Pitaevskii case), in the asymptotic limit where \varepsilon , the characteristic lengthscale of the vortices, tends to 0, and in a situation where the number of vortices N_\varepsilon blows up as \varepsilon \to 0. The requirements are that N_\varepsilon should blow up faster than \vert\mathrm {log } \, \varepsilon \vert in the Gross-Pitaevskii case, and at most like \vert\mathrm {log } \, \varepsilon \vert in the parabolic case. Both results assume a well-prepared initial condition and regularity of the limiting initial data, and use the regularity of the solution to the limiting equations.
ISSN:0894-0347
1088-6834
DOI:10.1090/jams/872