Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces

In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2018-01, Vol.56 (2), p.1222-1252
Hauptverfasser: Trélat, Emmanuel, Zhang, Can, Zuazua, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1252
container_issue 2
container_start_page 1222
container_title SIAM journal on control and optimization
container_volume 56
creator Trélat, Emmanuel
Zhang, Can
Zuazua, Enrique
description In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.
doi_str_mv 10.1137/16M1097638
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01377320v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01377320v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWC8v_oK8KqxOLnvJYynVCpUWWp-XbDLB6HazZKPYf--Wij7NcM43w-EQcsPgnjFRPrDihYEqC1GdkMm45VnJRHVKJiAKkQHj6pxcDMM7AJOSyQlxm4Ta7rNN0gmp7ixdY_TBekPn333osEtet3T7GbvefyBdx9BjTHvqQqSrPvnd6M5Cl2JoD2bT4m6gvqML3zYjSDe9NjhckTOn2wGvf-cleX2cb2eLbLl6ep5Nl5mRUKVMWFSqyJk11sjSNhyNhYaXo6KAF1aiLlhVWacq1LlwjWBW5hyQg2sUSHFJbo9_33Rb93FMF_d10L5eTJf1QYOxpVJw-GIje3dkTQzDENH9HTCoD23W_22KH_19Z3E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</title><source>SIAM Journals Online</source><creator>Trélat, Emmanuel ; Zhang, Can ; Zuazua, Enrique</creator><creatorcontrib>Trélat, Emmanuel ; Zhang, Can ; Zuazua, Enrique</creatorcontrib><description>In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/16M1097638</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Optimization and Control</subject><ispartof>SIAM journal on control and optimization, 2018-01, Vol.56 (2), p.1222-1252</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</citedby><cites>FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</cites><orcidid>0000-0002-0656-7003 ; 0000-0002-1377-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3170,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01377320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trélat, Emmanuel</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Zuazua, Enrique</creatorcontrib><title>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</title><title>SIAM journal on control and optimization</title><description>In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.</description><subject>Mathematics</subject><subject>Optimization and Control</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhYMoWC8v_oK8KqxOLnvJYynVCpUWWp-XbDLB6HazZKPYf--Wij7NcM43w-EQcsPgnjFRPrDihYEqC1GdkMm45VnJRHVKJiAKkQHj6pxcDMM7AJOSyQlxm4Ta7rNN0gmp7ixdY_TBekPn333osEtet3T7GbvefyBdx9BjTHvqQqSrPvnd6M5Cl2JoD2bT4m6gvqML3zYjSDe9NjhckTOn2wGvf-cleX2cb2eLbLl6ep5Nl5mRUKVMWFSqyJk11sjSNhyNhYaXo6KAF1aiLlhVWacq1LlwjWBW5hyQg2sUSHFJbo9_33Rb93FMF_d10L5eTJf1QYOxpVJw-GIje3dkTQzDENH9HTCoD23W_22KH_19Z3E</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Trélat, Emmanuel</creator><creator>Zhang, Can</creator><creator>Zuazua, Enrique</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid><orcidid>https://orcid.org/0000-0002-1377-0958</orcidid></search><sort><creationdate>201801</creationdate><title>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</title><author>Trélat, Emmanuel ; Zhang, Can ; Zuazua, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trélat, Emmanuel</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Zuazua, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trélat, Emmanuel</au><au>Zhang, Can</au><au>Zuazua, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2018-01</date><risdate>2018</risdate><volume>56</volume><issue>2</issue><spage>1222</spage><epage>1252</epage><pages>1222-1252</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/16M1097638</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid><orcidid>https://orcid.org/0000-0002-1377-0958</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2018-01, Vol.56 (2), p.1222-1252
issn 0363-0129
1095-7138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01377320v1
source SIAM Journals Online
subjects Mathematics
Optimization and Control
title Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady-State%20and%20Periodic%20Exponential%20Turnpike%20Property%20for%20Optimal%20Control%20Problems%20in%20Hilbert%20Spaces&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Tr%C3%A9lat,%20Emmanuel&rft.date=2018-01&rft.volume=56&rft.issue=2&rft.spage=1222&rft.epage=1252&rft.pages=1222-1252&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/16M1097638&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01377320v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true