Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces
In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact th...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2018-01, Vol.56 (2), p.1222-1252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1252 |
---|---|
container_issue | 2 |
container_start_page | 1222 |
container_title | SIAM journal on control and optimization |
container_volume | 56 |
creator | Trélat, Emmanuel Zhang, Can Zuazua, Enrique |
description | In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms. |
doi_str_mv | 10.1137/16M1097638 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01377320v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01377320v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</originalsourceid><addsrcrecordid>eNpFkFtLAzEQhYMoWC8v_oK8KqxOLnvJYynVCpUWWp-XbDLB6HazZKPYf--Wij7NcM43w-EQcsPgnjFRPrDihYEqC1GdkMm45VnJRHVKJiAKkQHj6pxcDMM7AJOSyQlxm4Ta7rNN0gmp7ixdY_TBekPn333osEtet3T7GbvefyBdx9BjTHvqQqSrPvnd6M5Cl2JoD2bT4m6gvqML3zYjSDe9NjhckTOn2wGvf-cleX2cb2eLbLl6ep5Nl5mRUKVMWFSqyJk11sjSNhyNhYaXo6KAF1aiLlhVWacq1LlwjWBW5hyQg2sUSHFJbo9_33Rb93FMF_d10L5eTJf1QYOxpVJw-GIje3dkTQzDENH9HTCoD23W_22KH_19Z3E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</title><source>SIAM Journals Online</source><creator>Trélat, Emmanuel ; Zhang, Can ; Zuazua, Enrique</creator><creatorcontrib>Trélat, Emmanuel ; Zhang, Can ; Zuazua, Enrique</creatorcontrib><description>In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/16M1097638</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Optimization and Control</subject><ispartof>SIAM journal on control and optimization, 2018-01, Vol.56 (2), p.1222-1252</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</citedby><cites>FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</cites><orcidid>0000-0002-0656-7003 ; 0000-0002-1377-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3170,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01377320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Trélat, Emmanuel</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Zuazua, Enrique</creatorcontrib><title>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</title><title>SIAM journal on control and optimization</title><description>In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.</description><subject>Mathematics</subject><subject>Optimization and Control</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkFtLAzEQhYMoWC8v_oK8KqxOLnvJYynVCpUWWp-XbDLB6HazZKPYf--Wij7NcM43w-EQcsPgnjFRPrDihYEqC1GdkMm45VnJRHVKJiAKkQHj6pxcDMM7AJOSyQlxm4Ta7rNN0gmp7ixdY_TBekPn333osEtet3T7GbvefyBdx9BjTHvqQqSrPvnd6M5Cl2JoD2bT4m6gvqML3zYjSDe9NjhckTOn2wGvf-cleX2cb2eLbLl6ep5Nl5mRUKVMWFSqyJk11sjSNhyNhYaXo6KAF1aiLlhVWacq1LlwjWBW5hyQg2sUSHFJbo9_33Rb93FMF_d10L5eTJf1QYOxpVJw-GIje3dkTQzDENH9HTCoD23W_22KH_19Z3E</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Trélat, Emmanuel</creator><creator>Zhang, Can</creator><creator>Zuazua, Enrique</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid><orcidid>https://orcid.org/0000-0002-1377-0958</orcidid></search><sort><creationdate>201801</creationdate><title>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</title><author>Trélat, Emmanuel ; Zhang, Can ; Zuazua, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3de99651dcdc47db2ecd0b2751d9026d4ea6188df98ea53fb31d4520e20fb9043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematics</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trélat, Emmanuel</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Zuazua, Enrique</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trélat, Emmanuel</au><au>Zhang, Can</au><au>Zuazua, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2018-01</date><risdate>2018</risdate><volume>56</volume><issue>2</issue><spage>1222</spage><epage>1252</epage><pages>1222-1252</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/16M1097638</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-0656-7003</orcidid><orcidid>https://orcid.org/0000-0002-1377-0958</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2018-01, Vol.56 (2), p.1222-1252 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01377320v1 |
source | SIAM Journals Online |
subjects | Mathematics Optimization and Control |
title | Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady-State%20and%20Periodic%20Exponential%20Turnpike%20Property%20for%20Optimal%20Control%20Problems%20in%20Hilbert%20Spaces&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Tr%C3%A9lat,%20Emmanuel&rft.date=2018-01&rft.volume=56&rft.issue=2&rft.spage=1222&rft.epage=1252&rft.pages=1222-1252&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/16M1097638&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01377320v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |