Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces

In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2018-01, Vol.56 (2), p.1222-1252
Hauptverfasser: Trélat, Emmanuel, Zhang, Can, Zuazua, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the steady-state (or periodic) exponential turnpike property of optimal control problems in Hilbert spaces. The turnpike property, which is essentially due to the hyperbolic feature of the Hamiltonian system resulting from the Pontryagin maximum principle, reflects the fact that, in large time, the optimal state, control and adjoint vector remain most of the time close to an optimal steady-state. A similar statement holds true as well when replacing an optimal steady-state by an optimal periodic trajectory. To establish the result, we design an appropriate dichotomy transformation, based on solutions of the algebraic Riccati and Lyapunov equations. We illustrate our results with examples including linear heat and wave equations with periodic tracking terms.
ISSN:0363-0129
1095-7138
DOI:10.1137/16M1097638