Local Exact Controllability of a One-Dimensional Nonlinear Schrödinger Equation

We consider a one-dimensional nonlinear Schrödinger equation, modeling a Bose--Einstein condensate in an infinite square-well potential (box). This is a nonlinear control system in which the state is the wave function of the Bose--Einstein condensate and the control is the length of the box. We prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2015-01, Vol.53 (5), p.2781-2818
Hauptverfasser: Beauchard, Karine, Lange, Horst, Teismann, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a one-dimensional nonlinear Schrödinger equation, modeling a Bose--Einstein condensate in an infinite square-well potential (box). This is a nonlinear control system in which the state is the wave function of the Bose--Einstein condensate and the control is the length of the box. We prove that local exact controllability around the ground state (associated with a fixed length of the box) holds generically with respect to the chemical potential $\mu $, i.e., up to an at most countable set of $\mu $-values. The proof relies on the linearization principle and the inverse mapping theorem, as well as ideas from analytic perturbation theory.Read More: epubs.siam.org/doi/10.1137/140951618
ISSN:0363-0129
1095-7138
DOI:10.1137/140951618