Multiscale Assembly of Superinsulating Silica Aerogels Within Silylated Nanocellulosic Scaffolds: Improved Mechanical Properties Promoted by Nanoscale Chemical Compatibilization

Silica aerogels are amongst the lightest mesoporous solids known and well recognized for their superinsulating properties, but the weak mechanical properties of the inorganic network structure has often narrowed their field of application. Here, the inherent brittleness of dried inorganic gels is ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2015-04, Vol.25 (15), p.2326-2334
Hauptverfasser: Zhao, Shanyu, Zhang, Zheng, Sèbe, Gilles, Wu, Rudder, Rivera Virtudazo, Raymond V., Tingaut, Philippe, Koebel, Matthias M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silica aerogels are amongst the lightest mesoporous solids known and well recognized for their superinsulating properties, but the weak mechanical properties of the inorganic network structure has often narrowed their field of application. Here, the inherent brittleness of dried inorganic gels is tackled through the elaboration of a strong mesoporous silica aerogel interpenetrated with a silylated nanocellulosic scaffold. To this avail, a functionalized scaffold is synthesized by freeze‐drying an aqueous suspension of nanofibrillated cellulose (NFC)—a bio‐based nanomaterial mechanically isolated from renewable resources—in the presence of methyltrimethoxysilane sol. The silylated NFC scaffold displays a high porosity (>98%), high flexibility, and reduced thermal conductivity (λ) compared with classical cellulosic structures. The polysiloxane layer decorating the nanocellulosic scaffold is exploited to promote the attachment of the mesoporous silica matrix onto the nanofibrillated cellulose scaffold (NFCS), leading to a reinforced silica hybrid aerogel with improved thermomechanical properties. The highly porous (>93%) silica‐NFC hybrids displays meso‐ and macroporosity with pore diameters controllable by the NFCS mass fraction, reduced linear shrinkage, improved compressive properties (55% and 126% increase in Young's modulus and tensile strength, respectively), while maintaining superinsulating properties (λ ≤ 20 mW (m K)–1). This study details a new direction for the synthesis of multiscale hybrid silica aerogel structures with tailored properties through the use of alkyltrialkoxysilane prefunctionalized nanocellulosic scaffolds. A strong multiscale silica aerogel is obtained through the interpenetration of silica nanoparticles with a silylated nanocellulosic scaffold. The polysiloxane layer decorating the scaffold is exploited to promote the attachment of the mesoporous silica matrix onto the nanofibrillated cellulose scaffold, leading to highly porous silica hybrid aerogel displaying reduced linear shrinkage, improved compressive properties but maintaining its superinsulating properties.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201404368