Decomposition of Exact pfd Persistence Bimodules

We characterize the class of persistence modules indexed over R 2 that are decomposable into summands whose supports have the shape of a block —i.e. a horizontal band, a vertical band, an upper-right quadrant, or a lower-left quadrant. Assuming the modules are pointwise finite dimensional (pfd), we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2020-03, Vol.63 (2), p.255-293
Hauptverfasser: Cochoy, Jérémy, Oudot, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the class of persistence modules indexed over R 2 that are decomposable into summands whose supports have the shape of a block —i.e. a horizontal band, a vertical band, an upper-right quadrant, or a lower-left quadrant. Assuming the modules are pointwise finite dimensional (pfd), we show that they are decomposable into block summands if and only if they satisfy a certain local property called exactness . Our proof follows the same scheme as the proof of decomposition for pfd persistence modules indexed over R , yet it departs from it at key stages due to the product order on R 2 not being a total order, which leaves some important gaps open. These gaps are filled in using more direct arguments. Our work is motivated primarily by the stability theory for zigzags and interlevel-sets persistence modules, in which block-decomposable bimodules play a key part. Our results allow us to drop some of the conditions under which that theory holds, in particular the Morse-type conditions.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-019-00165-z