First Membrane Proximal External Region-Specific Anti-HIV1 Broadly Neutralizing Monoclonal IgA1 Presenting Short CDRH3 and Low Somatic Mutations

Mucosal HIV-1-specific IgA have been described as being able to neutralize HIV-1 and to block viral transcytosis. In serum and saliva, the anti-HIV IgA response is predominantly raised against the envelope of HIV-1. In this work, we describe the in vivo generation of gp41-specific IgA1 in humanized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2016-09, Vol.197 (5), p.1979-1988
Hauptverfasser: Benjelloun, Fahd, Oruc, Zeliha, Thielens, Nicole, Verrier, Bernard, Champier, Gael, Vincent, Nadine, Rochereau, Nicolas, Girard, Alexandre, Jospin, Fabienne, Chanut, Blandine, Genin, Christian, Cogné, Michel, Paul, Stephane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mucosal HIV-1-specific IgA have been described as being able to neutralize HIV-1 and to block viral transcytosis. In serum and saliva, the anti-HIV IgA response is predominantly raised against the envelope of HIV-1. In this work, we describe the in vivo generation of gp41-specific IgA1 in humanized α1KI mice to produce chimeric IgA1. Mice were immunized with a conformational immunogenic gp41-transfected cell line. Among 2300 clones screened by immunofluorescence microscopy, six different gp41-specific IgA with strong recognition of gp41 were identified. Two of them have strong neutralizing activity against primary HIV-1 tier 1, 2, and 3 strains and present a low rate of somatic mutations and autoreactivity, unlike what was described for classical gp41-specific IgG. Epitopes were identified and located in the hepted repeat 2/membrane proximal external region. These Abs could be of interest in prophylactic treatment to block HIV-1 penetration in mucosa or in chronically infected patients in combination with antiretroviral therapy to reduce viral load and reservoir.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1600309