Kolmogorov widths and low-rank approximations of parametric elliptic PDEs
Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. How...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2017-03, Vol.86 (304), p.701-724 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 304 |
container_start_page | 701 |
container_title | Mathematics of computation |
container_volume | 86 |
creator | Bachmayr, Markus Cohen, Albert |
description | Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths. |
doi_str_mv | 10.1090/mcom/3132 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01352277v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>mathcomp.86.304.701</jstor_id><sourcerecordid>mathcomp.86.304.701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-1f505b36242309136dfcf1788d85f29410e0e21a1bb64020b3cbf4ae92e513d13</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqUw8AYZGGAIvbNjxxmrUmhFJRhgtpzEpilJHdlRC29PoqKKielOp-9-3X2EXCPcI2QwaQrXTBgyekJGCFLGQib0lIwAKI95ivKcXISwAQAUPB2R5bOrG_fhvNtF-6rs1iHS2zKq3T72evsZ6bb17qtqdFe5bYicjVrtdWM6XxWRqeuq7frm9WEeLsmZ1XUwV791TN4f52-zRbx6eVrOpqtYMwFdjJYDz5mgCWWQIROlLSymUpaSW5olCAYMRY15LhKgkLMit4k2GTUcWYlsTO4OuWtdq9b3p_lv5XSlFtOVGmaAjFOaprs_bOFdCN7Y4wKCGnypwZcafPXs7YHdhM75I9h_vu6ZVkmhGCQqhSH25oDqJvyT-AMj7Hb2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><creator>Bachmayr, Markus ; Cohen, Albert</creator><creatorcontrib>Bachmayr, Markus ; Cohen, Albert</creatorcontrib><description>Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3132</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Mathematics ; Numerical Analysis ; Research article</subject><ispartof>Mathematics of computation, 2017-03, Vol.86 (304), p.701-724</ispartof><rights>Copyright 2016 American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-1f505b36242309136dfcf1788d85f29410e0e21a1bb64020b3cbf4ae92e513d13</citedby><orcidid>0000-0002-8866-5343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/mcom/2017-86-304/S0025-5718-2016-03132-4/S0025-5718-2016-03132-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/mcom/2017-86-304/S0025-5718-2016-03132-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,799,828,881,23303,23307,27901,27902,57992,57996,58225,58229,77579,77581,77589,77591</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01352277$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachmayr, Markus</creatorcontrib><creatorcontrib>Cohen, Albert</creatorcontrib><title>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</title><title>Mathematics of computation</title><addtitle>Math. Comp</addtitle><description>Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.</description><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Research article</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqUw8AYZGGAIvbNjxxmrUmhFJRhgtpzEpilJHdlRC29PoqKKielOp-9-3X2EXCPcI2QwaQrXTBgyekJGCFLGQib0lIwAKI95ivKcXISwAQAUPB2R5bOrG_fhvNtF-6rs1iHS2zKq3T72evsZ6bb17qtqdFe5bYicjVrtdWM6XxWRqeuq7frm9WEeLsmZ1XUwV791TN4f52-zRbx6eVrOpqtYMwFdjJYDz5mgCWWQIROlLSymUpaSW5olCAYMRY15LhKgkLMit4k2GTUcWYlsTO4OuWtdq9b3p_lv5XSlFtOVGmaAjFOaprs_bOFdCN7Y4wKCGnypwZcafPXs7YHdhM75I9h_vu6ZVkmhGCQqhSH25oDqJvyT-AMj7Hb2</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Bachmayr, Markus</creator><creator>Cohen, Albert</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8866-5343</orcidid></search><sort><creationdate>20170301</creationdate><title>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</title><author>Bachmayr, Markus ; Cohen, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-1f505b36242309136dfcf1788d85f29410e0e21a1bb64020b3cbf4ae92e513d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachmayr, Markus</creatorcontrib><creatorcontrib>Cohen, Albert</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachmayr, Markus</au><au>Cohen, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</atitle><jtitle>Mathematics of computation</jtitle><stitle>Math. Comp</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>86</volume><issue>304</issue><spage>701</spage><epage>724</epage><pages>701-724</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/mcom/3132</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8866-5343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2017-03, Vol.86 (304), p.701-724 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01352277v1 |
source | Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics |
subjects | Mathematics Numerical Analysis Research article |
title | Kolmogorov widths and low-rank approximations of parametric elliptic PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kolmogorov%20widths%20and%20low-rank%20approximations%20of%20parametric%20elliptic%20PDEs&rft.jtitle=Mathematics%20of%20computation&rft.au=Bachmayr,%20Markus&rft.date=2017-03-01&rft.volume=86&rft.issue=304&rft.spage=701&rft.epage=724&rft.pages=701-724&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3132&rft_dat=%3Cjstor_hal_p%3Emathcomp.86.304.701%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=mathcomp.86.304.701&rfr_iscdi=true |