Kolmogorov widths and low-rank approximations of parametric elliptic PDEs

Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2017-03, Vol.86 (304), p.701-724
Hauptverfasser: Bachmayr, Markus, Cohen, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 304
container_start_page 701
container_title Mathematics of computation
container_volume 86
creator Bachmayr, Markus
Cohen, Albert
description Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.
doi_str_mv 10.1090/mcom/3132
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01352277v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>mathcomp.86.304.701</jstor_id><sourcerecordid>mathcomp.86.304.701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-1f505b36242309136dfcf1788d85f29410e0e21a1bb64020b3cbf4ae92e513d13</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqUw8AYZGGAIvbNjxxmrUmhFJRhgtpzEpilJHdlRC29PoqKKielOp-9-3X2EXCPcI2QwaQrXTBgyekJGCFLGQib0lIwAKI95ivKcXISwAQAUPB2R5bOrG_fhvNtF-6rs1iHS2zKq3T72evsZ6bb17qtqdFe5bYicjVrtdWM6XxWRqeuq7frm9WEeLsmZ1XUwV791TN4f52-zRbx6eVrOpqtYMwFdjJYDz5mgCWWQIROlLSymUpaSW5olCAYMRY15LhKgkLMit4k2GTUcWYlsTO4OuWtdq9b3p_lv5XSlFtOVGmaAjFOaprs_bOFdCN7Y4wKCGnypwZcafPXs7YHdhM75I9h_vu6ZVkmhGCQqhSH25oDqJvyT-AMj7Hb2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Bachmayr, Markus ; Cohen, Albert</creator><creatorcontrib>Bachmayr, Markus ; Cohen, Albert</creatorcontrib><description>Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3132</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Mathematics ; Numerical Analysis ; Research article</subject><ispartof>Mathematics of computation, 2017-03, Vol.86 (304), p.701-724</ispartof><rights>Copyright 2016 American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-1f505b36242309136dfcf1788d85f29410e0e21a1bb64020b3cbf4ae92e513d13</citedby><orcidid>0000-0002-8866-5343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/mcom/2017-86-304/S0025-5718-2016-03132-4/S0025-5718-2016-03132-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/mcom/2017-86-304/S0025-5718-2016-03132-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,776,780,799,828,881,23303,23307,27901,27902,57992,57996,58225,58229,77579,77581,77589,77591</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01352277$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachmayr, Markus</creatorcontrib><creatorcontrib>Cohen, Albert</creatorcontrib><title>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</title><title>Mathematics of computation</title><addtitle>Math. Comp</addtitle><description>Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.</description><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Research article</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqUw8AYZGGAIvbNjxxmrUmhFJRhgtpzEpilJHdlRC29PoqKKielOp-9-3X2EXCPcI2QwaQrXTBgyekJGCFLGQib0lIwAKI95ivKcXISwAQAUPB2R5bOrG_fhvNtF-6rs1iHS2zKq3T72evsZ6bb17qtqdFe5bYicjVrtdWM6XxWRqeuq7frm9WEeLsmZ1XUwV791TN4f52-zRbx6eVrOpqtYMwFdjJYDz5mgCWWQIROlLSymUpaSW5olCAYMRY15LhKgkLMit4k2GTUcWYlsTO4OuWtdq9b3p_lv5XSlFtOVGmaAjFOaprs_bOFdCN7Y4wKCGnypwZcafPXs7YHdhM75I9h_vu6ZVkmhGCQqhSH25oDqJvyT-AMj7Hb2</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Bachmayr, Markus</creator><creator>Cohen, Albert</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8866-5343</orcidid></search><sort><creationdate>20170301</creationdate><title>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</title><author>Bachmayr, Markus ; Cohen, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-1f505b36242309136dfcf1788d85f29410e0e21a1bb64020b3cbf4ae92e513d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachmayr, Markus</creatorcontrib><creatorcontrib>Cohen, Albert</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachmayr, Markus</au><au>Cohen, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kolmogorov widths and low-rank approximations of parametric elliptic PDEs</atitle><jtitle>Mathematics of computation</jtitle><stitle>Math. Comp</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>86</volume><issue>304</issue><spage>701</spage><epage>724</epage><pages>701-724</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/mcom/3132</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8866-5343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2017-03, Vol.86 (304), p.701-724
issn 0025-5718
1088-6842
language eng
recordid cdi_hal_primary_oai_HAL_hal_01352277v1
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics
subjects Mathematics
Numerical Analysis
Research article
title Kolmogorov widths and low-rank approximations of parametric elliptic PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kolmogorov%20widths%20and%20low-rank%20approximations%20of%20parametric%20elliptic%20PDEs&rft.jtitle=Mathematics%20of%20computation&rft.au=Bachmayr,%20Markus&rft.date=2017-03-01&rft.volume=86&rft.issue=304&rft.spage=701&rft.epage=724&rft.pages=701-724&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3132&rft_dat=%3Cjstor_hal_p%3Emathcomp.86.304.701%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=mathcomp.86.304.701&rfr_iscdi=true