Kolmogorov widths and low-rank approximations of parametric elliptic PDEs

Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2017-03, Vol.86 (304), p.701-724
Hauptverfasser: Bachmayr, Markus, Cohen, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kolmogorov nn-widths and low-rank approximations are studied for families of elliptic diffusion PDEs parametrized by the diffusion coefficients. The decay of the nn-widths can be controlled by that of the error achieved by best nn-term approximations using polynomials in the parametric variable. However, we prove that in certain relevant instances where the diffusion coefficients are piecewise constant over a partition of the physical domain, the nn-widths exhibit significantly faster decay. This, in turn, yields a theoretical justification of the fast convergence of reduced basis or POD methods when treating such parametric PDEs. Our results are confirmed by numerical experiments, which also reveal the influence of the partition geometry on the decay of the nn-widths.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3132