On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary

In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2017-03, Vol.87 (3), p.411-434
1. Verfasser: Le Peutrec, Dorian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 3
container_start_page 411
container_title Integral equations and operator theory
container_volume 87
creator Le Peutrec, Dorian
description In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.
doi_str_mv 10.1007/s00020-017-2354-1
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01349786v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881811450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</originalsourceid><addsrcrecordid>eNp1kEFLwzAcxYMoOKcfwFvAk4fqP0nXpMdN1A0qA1H0FtI2cR1d2jWtstu-gye_3j6JGRXx4ukPj997789D6JzAFQHg1w4AKARAeEDZKAzIARqQ0CsiFvEhGgDjIogovB6jE-eWHqacRgP0OLf4pWhbbXGi6lJlhbIOK5vjSaNcplb1bvuZFDrdbb8cnlm97lRZtBtcWfygbGGqMnf4o2gXeFJ1NlfN5hQdGVU6ffZzh-j57vbpZhok8_vZzTgJMgaCBHFu0pSOMmrAcM1zYDHjIacahCCgR2kqchVHIjQ8YqHiVGgS5cpkjOaZAcqG6LLPXahS1k2x8t2yUoWcjhO514CwMOYiet-zFz1bN9W6066Vy6prrH9PEl8nCAlH4CnSU1lTOddo8xtLQO5nlv3MPpnL_cySeA_tPc6z9k03f5L_NX0DwCiACw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881811450</pqid></control><display><type>article</type><title>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</title><source>SpringerLink Journals - AutoHoldings</source><creator>Le Peutrec, Dorian</creator><creatorcontrib>Le Peutrec, Dorian</creatorcontrib><description>In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-017-2354-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analysis of PDEs ; Differential Geometry ; Dirichlet problem ; Functional Analysis ; Inequalities ; Mathematics ; Mathematics and Statistics ; Quadratic forms ; Riemann manifold ; Spectral Theory ; Supersymmetry ; Theorems ; Topological manifolds</subject><ispartof>Integral equations and operator theory, 2017-03, Vol.87 (3), p.411-434</ispartof><rights>Springer International Publishing 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</citedby><cites>FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</cites><orcidid>0000-0003-0359-7925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-017-2354-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-017-2354-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01349786$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Peutrec, Dorian</creatorcontrib><title>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.</description><subject>Analysis</subject><subject>Analysis of PDEs</subject><subject>Differential Geometry</subject><subject>Dirichlet problem</subject><subject>Functional Analysis</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quadratic forms</subject><subject>Riemann manifold</subject><subject>Spectral Theory</subject><subject>Supersymmetry</subject><subject>Theorems</subject><subject>Topological manifolds</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAcxYMoOKcfwFvAk4fqP0nXpMdN1A0qA1H0FtI2cR1d2jWtstu-gye_3j6JGRXx4ukPj997789D6JzAFQHg1w4AKARAeEDZKAzIARqQ0CsiFvEhGgDjIogovB6jE-eWHqacRgP0OLf4pWhbbXGi6lJlhbIOK5vjSaNcplb1bvuZFDrdbb8cnlm97lRZtBtcWfygbGGqMnf4o2gXeFJ1NlfN5hQdGVU6ffZzh-j57vbpZhok8_vZzTgJMgaCBHFu0pSOMmrAcM1zYDHjIacahCCgR2kqchVHIjQ8YqHiVGgS5cpkjOaZAcqG6LLPXahS1k2x8t2yUoWcjhO514CwMOYiet-zFz1bN9W6066Vy6prrH9PEl8nCAlH4CnSU1lTOddo8xtLQO5nlv3MPpnL_cySeA_tPc6z9k03f5L_NX0DwCiACw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Le Peutrec, Dorian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0359-7925</orcidid></search><sort><creationdate>20170301</creationdate><title>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</title><author>Le Peutrec, Dorian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Analysis of PDEs</topic><topic>Differential Geometry</topic><topic>Dirichlet problem</topic><topic>Functional Analysis</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quadratic forms</topic><topic>Riemann manifold</topic><topic>Spectral Theory</topic><topic>Supersymmetry</topic><topic>Theorems</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Peutrec, Dorian</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Peutrec, Dorian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>87</volume><issue>3</issue><spage>411</spage><epage>434</epage><pages>411-434</pages><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-017-2354-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0359-7925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-620X
ispartof Integral equations and operator theory, 2017-03, Vol.87 (3), p.411-434
issn 0378-620X
1420-8989
language eng
recordid cdi_hal_primary_oai_HAL_hal_01349786v2
source SpringerLink Journals - AutoHoldings
subjects Analysis
Analysis of PDEs
Differential Geometry
Dirichlet problem
Functional Analysis
Inequalities
Mathematics
Mathematics and Statistics
Quadratic forms
Riemann manifold
Spectral Theory
Supersymmetry
Theorems
Topological manifolds
title On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Witten%20Laplacians%20and%20Brascamp%E2%80%93Lieb%E2%80%99s%20Inequality%20on%20Manifolds%20with%20Boundary&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Le%20Peutrec,%20Dorian&rft.date=2017-03-01&rft.volume=87&rft.issue=3&rft.spage=411&rft.epage=434&rft.pages=411-434&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-017-2354-1&rft_dat=%3Cproquest_hal_p%3E1881811450%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881811450&rft_id=info:pmid/&rfr_iscdi=true