On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary
In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2017-03, Vol.87 (3), p.411-434 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 434 |
---|---|
container_issue | 3 |
container_start_page | 411 |
container_title | Integral equations and operator theory |
container_volume | 87 |
creator | Le Peutrec, Dorian |
description | In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary. |
doi_str_mv | 10.1007/s00020-017-2354-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01349786v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881811450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</originalsourceid><addsrcrecordid>eNp1kEFLwzAcxYMoOKcfwFvAk4fqP0nXpMdN1A0qA1H0FtI2cR1d2jWtstu-gye_3j6JGRXx4ukPj997789D6JzAFQHg1w4AKARAeEDZKAzIARqQ0CsiFvEhGgDjIogovB6jE-eWHqacRgP0OLf4pWhbbXGi6lJlhbIOK5vjSaNcplb1bvuZFDrdbb8cnlm97lRZtBtcWfygbGGqMnf4o2gXeFJ1NlfN5hQdGVU6ffZzh-j57vbpZhok8_vZzTgJMgaCBHFu0pSOMmrAcM1zYDHjIacahCCgR2kqchVHIjQ8YqHiVGgS5cpkjOaZAcqG6LLPXahS1k2x8t2yUoWcjhO514CwMOYiet-zFz1bN9W6066Vy6prrH9PEl8nCAlH4CnSU1lTOddo8xtLQO5nlv3MPpnL_cySeA_tPc6z9k03f5L_NX0DwCiACw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881811450</pqid></control><display><type>article</type><title>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</title><source>SpringerLink Journals - AutoHoldings</source><creator>Le Peutrec, Dorian</creator><creatorcontrib>Le Peutrec, Dorian</creatorcontrib><description>In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-017-2354-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analysis of PDEs ; Differential Geometry ; Dirichlet problem ; Functional Analysis ; Inequalities ; Mathematics ; Mathematics and Statistics ; Quadratic forms ; Riemann manifold ; Spectral Theory ; Supersymmetry ; Theorems ; Topological manifolds</subject><ispartof>Integral equations and operator theory, 2017-03, Vol.87 (3), p.411-434</ispartof><rights>Springer International Publishing 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</citedby><cites>FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</cites><orcidid>0000-0003-0359-7925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-017-2354-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-017-2354-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01349786$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Peutrec, Dorian</creatorcontrib><title>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.</description><subject>Analysis</subject><subject>Analysis of PDEs</subject><subject>Differential Geometry</subject><subject>Dirichlet problem</subject><subject>Functional Analysis</subject><subject>Inequalities</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Quadratic forms</subject><subject>Riemann manifold</subject><subject>Spectral Theory</subject><subject>Supersymmetry</subject><subject>Theorems</subject><subject>Topological manifolds</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAcxYMoOKcfwFvAk4fqP0nXpMdN1A0qA1H0FtI2cR1d2jWtstu-gye_3j6JGRXx4ukPj997789D6JzAFQHg1w4AKARAeEDZKAzIARqQ0CsiFvEhGgDjIogovB6jE-eWHqacRgP0OLf4pWhbbXGi6lJlhbIOK5vjSaNcplb1bvuZFDrdbb8cnlm97lRZtBtcWfygbGGqMnf4o2gXeFJ1NlfN5hQdGVU6ffZzh-j57vbpZhok8_vZzTgJMgaCBHFu0pSOMmrAcM1zYDHjIacahCCgR2kqchVHIjQ8YqHiVGgS5cpkjOaZAcqG6LLPXahS1k2x8t2yUoWcjhO514CwMOYiet-zFz1bN9W6066Vy6prrH9PEl8nCAlH4CnSU1lTOddo8xtLQO5nlv3MPpnL_cySeA_tPc6z9k03f5L_NX0DwCiACw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Le Peutrec, Dorian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0359-7925</orcidid></search><sort><creationdate>20170301</creationdate><title>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</title><author>Le Peutrec, Dorian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3081-9dfbb25c2f0f7e7d03937472e08810e5bb8da9684f7634a728e16dafc32dcf023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Analysis of PDEs</topic><topic>Differential Geometry</topic><topic>Dirichlet problem</topic><topic>Functional Analysis</topic><topic>Inequalities</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Quadratic forms</topic><topic>Riemann manifold</topic><topic>Spectral Theory</topic><topic>Supersymmetry</topic><topic>Theorems</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Peutrec, Dorian</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Peutrec, Dorian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>87</volume><issue>3</issue><spage>411</spage><epage>434</epage><pages>411-434</pages><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-017-2354-1</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0359-7925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-620X |
ispartof | Integral equations and operator theory, 2017-03, Vol.87 (3), p.411-434 |
issn | 0378-620X 1420-8989 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01349786v2 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Analysis of PDEs Differential Geometry Dirichlet problem Functional Analysis Inequalities Mathematics Mathematics and Statistics Quadratic forms Riemann manifold Spectral Theory Supersymmetry Theorems Topological manifolds |
title | On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Witten%20Laplacians%20and%20Brascamp%E2%80%93Lieb%E2%80%99s%20Inequality%20on%20Manifolds%20with%20Boundary&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Le%20Peutrec,%20Dorian&rft.date=2017-03-01&rft.volume=87&rft.issue=3&rft.spage=411&rft.epage=434&rft.pages=411-434&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-017-2354-1&rft_dat=%3Cproquest_hal_p%3E1881811450%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881811450&rft_id=info:pmid/&rfr_iscdi=true |