On Witten Laplacians and Brascamp–Lieb’s Inequality on Manifolds with Boundary

In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2017-03, Vol.87 (3), p.411-434
1. Verfasser: Le Peutrec, Dorian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we derive from the supersymmetry of the Witten Laplacian Brascamp–Lieb’s type inequalities for general differential forms on compact Riemannian manifolds with boundary. In addition to the supersymmetry, our results essentially follow from suitable decompositions of the quadratic forms associated with the Neumann and Dirichlet self-adjoint realizations of the Witten Laplacian. They moreover imply the usual Brascamp–Lieb’s inequality and its generalization to compact Riemannian manifolds without boundary.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-017-2354-1