AN APPLICATION OF THE RINAR(1) PROCESS

We introduce a new class of autoregressive models for integervalued time series using the rounding operator. Compared to classical INAR models based on the thinning operator, the new models have several advantages: simple innovation structure; autoregressive coefficients with arbitrary signs; possib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IFAC Proceedings Volumes 2009, Vol.42 (10), p.1441-1444
Hauptverfasser: Kachour, M., Yao, J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new class of autoregressive models for integervalued time series using the rounding operator. Compared to classical INAR models based on the thinning operator, the new models have several advantages: simple innovation structure; autoregressive coefficients with arbitrary signs; possible negative values for time series; possible negative values for the autocorrelation function. Focused on the first order RINAR(1) model, we give conditions for its ergodicity and stationarity. For parameter estimation, a least squares estimator is introduced and we prove its consistency under suitable identifiability condition. An analysis of real data set is carried out to access the performance of the model.
ISSN:1474-6670
2589-3653
DOI:10.3182/20090706-3-FR-2004.00240