Bootstrap for the second-order analysis of Poisson-sampled almost periodic processes
In this paper we consider a continuous almost periodically correlated process {X(t), t ∈ R} that is observed at the jump moments of a stationary Poisson point process {N (t), t ≥ 0}. The processes {X(t), t ∈ R} and {N (t), t ≥ 0} are assumed to be independent. We define the kernel estimators of the...
Gespeichert in:
Veröffentlicht in: | Electronic journal of statistics 2017-01, Vol.11 (1), p.99-147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider a continuous almost periodically correlated process {X(t), t ∈ R} that is observed at the jump moments of a stationary Poisson point process {N (t), t ≥ 0}. The processes {X(t), t ∈ R} and {N (t), t ≥ 0} are assumed to be independent. We define the kernel estimators of the Fourier coefficients of the autocovariance function of X(t) and investigate their asymptotic properties. Moreover, we propose a bootstrap method that provides consistent pointwise and simultaneous confidence intervals for the considered coefficients. Finally, to illustrate our results we provide a simulated data example. |
---|---|
ISSN: | 1935-7524 1935-7524 |
DOI: | 10.1214/17-EJS1225 |