Density of the span of powers of a function à la Müntz-Szasz
The aim of this paper is to establish density properties in $L^p$ spaces of the span of powers of functions $\{\psi^\lambda\,:\lambda\in\Lambda\}$, $\Lambda\subset\N$ in the spirit of the M\"untz-Sz\'asz Theorem. As density is almost never achieved, we further investigate the density of po...
Gespeichert in:
Veröffentlicht in: | Bulletin des sciences mathématiques 2018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to establish density properties in $L^p$ spaces of the span of powers of functions $\{\psi^\lambda\,:\lambda\in\Lambda\}$, $\Lambda\subset\N$ in the spirit of the M\"untz-Sz\'asz Theorem. As density is almost never achieved, we further investigate the density of powers and a modulation of powers $\{\psi^\lambda,\psi^\lambda e^{i\alpha t}\,:\lambda\in\Lambda\}$. Finally, we establish a M\"untz-Sz\'asz Theorem for density of translates of powers of cosines $\{\cos^\lambda(t-\theta_1),\cos^\lambda(t-\theta_2)\,:\lambda\in\Lambda\}$. Under some arithmetic restrictions on $\theta_1-\theta_2$, we show that density is equivalent to a M\"untz-Sz\'asz condition on $\Lambda$ and we conjecture that those arithmetic restrictions are not needed.Some links are also established with the recently introduced concept of Heisenberg Uniqueness Pairs. |
---|---|
ISSN: | 0007-4497 |