Contribution of microwave accelerated distillation in the extraction of the essential oil of Zygophyllum album L

Introduction – The aerial parts of Zygophyllum album L. are used in folk medicine as an antidiabetic agent and as a drug active against several pathologies. In this work we present the chemical composition of Algerian essential oils obtained by microwave accelerated distillation (MAD) extraction, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytochemical analysis 2011-01, Vol.22 (1), p.1-9
Hauptverfasser: Tigrine-Kordjani, Nacéra, Meklati, Brahim Youcef, Chemat, Farid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction – The aerial parts of Zygophyllum album L. are used in folk medicine as an antidiabetic agent and as a drug active against several pathologies. In this work we present the chemical composition of Algerian essential oils obtained by microwave accelerated distillation (MAD) extraction, a solventless method assisted by microwave. Objective – Under the same analytical conditions and using GC‐FID and GC‐MS, the chemical composition of the essential oil of Zygophyllum album L. extracted by MAD was compared with that achieved using hydrodistillation (HD). Methodology – The extracted compounds were hydrosoluble, and they were removed from the aqueous solution by a liquid extraction with an organic solvent. Results – Employing MAD (100°C, 30 min), the essential oil contained mainly oxygenated monoterpenes with major constituents: carvone and α‐terpineol. However, most of the compounds present in the hydrodistilled volatile fraction were not terpene species, with β‐damascenone as a major constituent. Conclusion – The MAD method appears to be more efficient than HD: after 30 min extraction time, the obtained yields (i.e. 0.002%) were comparable to those provided by HD after 3 h extraction. MAD seems to be more convenient since the volatile fraction is richer in oxygenated monoterpenes, species that are recognised for their olfactory value and their contribution to the fragrance of the essential oil. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:0958-0344
1099-1565
1099-1565
DOI:10.1002/pca.1236