Nonlinear Time-Dependent Behavior of Composite Steel-Concrete Beams
AbstractThis paper presents a mixed finite element (FE) model for the nonlinear time-dependent analysis of composite beams with partial shear connection. The key idea is to consider, as a first approach, a viscoelastic/plastic model for the concrete slab in order to simulate the interaction between...
Gespeichert in:
Veröffentlicht in: | Journal of structural engineering (New York, N.Y.) N.Y.), 2016-05, Vol.142 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AbstractThis paper presents a mixed finite element (FE) model for the nonlinear time-dependent analysis of composite beams with partial shear connection. The key idea is to consider, as a first approach, a viscoelastic/plastic model for the concrete slab in order to simulate the interaction between the time effects of concrete, such as creep and shrinkage, and the concrete cracking. Creep is taken into account via linear aging viscoelasticity, while cracking is modeled using an elastoplastic model with softening. A nonlinear isotropic/kinematic hardening model is adopted for steel behavior and an appropriate nonlinear constitutive relationship is utilized for the shear stud. A consistent time integration is performed by adopting the Euler backward scheme. Finally, comparisons between the numerical results and experimental data available in the literature are undertaken to validate the accuracy of the model. It is shown that the interaction between cracking and time effects (creep and shrinkage) significantly increases the deflection. |
---|---|
ISSN: | 0733-9445 1943-541X |
DOI: | 10.1061/(ASCE)ST.1943-541X.0001432 |