Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces

In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Set-valued and variational analysis 2016-03, Vol.24 (1), p.13-35
Hauptverfasser: Adly, Samir, Hantoute, Abderrahim, Le, Ba Khiet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 13
container_title Set-valued and variational analysis
container_volume 24
creator Adly, Samir
Hantoute, Abderrahim
Le, Ba Khiet
description In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis.
doi_str_mv 10.1007/s11228-015-0334-7
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01313150v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01313150v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHbZsjB4_Mgky6pAixTBorC2HOPQVHlUdorUHdfgepwEV0FdolnMaPR_I81HyDWwW2AM7wIA5xlloCgTQlI8IRPIEClTEk6PsxDn5CKETUQYy2FC1HPfhbbvh3VS7PzP17dL7vedaWtrmmS1D4NrQ1J3ybJuSueHZLU11oVLclaZJrirvz4lb48Pr_MlLV4WT_NZQa1I1UBVlUrMOaQKZSkdlqmshFAcIAObYpkjtxZLhHeosDIqE7lwEliuUp5LYcWU3Ix316bRW1-3xu91b2q9nBX6sGMgYin2CTELY9b6PgTvqiMATB8c6dFRZJQ-ONIYGT4yIWa7D-f1pt_5Lr70D_QLZwRnPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</title><source>SpringerLink</source><creator>Adly, Samir ; Hantoute, Abderrahim ; Le, Ba Khiet</creator><creatorcontrib>Adly, Samir ; Hantoute, Abderrahim ; Le, Ba Khiet</creatorcontrib><description>In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-015-0334-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Optimization ; Optimization and Control</subject><ispartof>Set-valued and variational analysis, 2016-03, Vol.24 (1), p.13-35</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</citedby><cites>FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</cites><orcidid>0000-0002-4375-0106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11228-015-0334-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11228-015-0334-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01313150$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Adly, Samir</creatorcontrib><creatorcontrib>Hantoute, Abderrahim</creatorcontrib><creatorcontrib>Le, Ba Khiet</creatorcontrib><title>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Optimization and Control</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHbZsjB4_Mgky6pAixTBorC2HOPQVHlUdorUHdfgepwEV0FdolnMaPR_I81HyDWwW2AM7wIA5xlloCgTQlI8IRPIEClTEk6PsxDn5CKETUQYy2FC1HPfhbbvh3VS7PzP17dL7vedaWtrmmS1D4NrQ1J3ybJuSueHZLU11oVLclaZJrirvz4lb48Pr_MlLV4WT_NZQa1I1UBVlUrMOaQKZSkdlqmshFAcIAObYpkjtxZLhHeosDIqE7lwEliuUp5LYcWU3Ix316bRW1-3xu91b2q9nBX6sGMgYin2CTELY9b6PgTvqiMATB8c6dFRZJQ-ONIYGT4yIWa7D-f1pt_5Lr70D_QLZwRnPw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Adly, Samir</creator><creator>Hantoute, Abderrahim</creator><creator>Le, Ba Khiet</creator><general>Springer Netherlands</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4375-0106</orcidid></search><sort><creationdate>20160301</creationdate><title>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</title><author>Adly, Samir ; Hantoute, Abderrahim ; Le, Ba Khiet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adly, Samir</creatorcontrib><creatorcontrib>Hantoute, Abderrahim</creatorcontrib><creatorcontrib>Le, Ba Khiet</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adly, Samir</au><au>Hantoute, Abderrahim</au><au>Le, Ba Khiet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>24</volume><issue>1</issue><spage>13</spage><epage>35</epage><pages>13-35</pages><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-015-0334-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4375-0106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1877-0533
ispartof Set-valued and variational analysis, 2016-03, Vol.24 (1), p.13-35
issn 1877-0533
1877-0541
language eng
recordid cdi_hal_primary_oai_HAL_hal_01313150v1
source SpringerLink
subjects Analysis
Mathematics
Mathematics and Statistics
Optimization
Optimization and Control
title Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsmooth%20Lur%E2%80%99e%20Dynamical%20Systems%20in%20Hilbert%20Spaces&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=Adly,%20Samir&rft.date=2016-03-01&rft.volume=24&rft.issue=1&rft.spage=13&rft.epage=35&rft.pages=13-35&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-015-0334-7&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01313150v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true