Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces
In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term invo...
Gespeichert in:
Veröffentlicht in: | Set-valued and variational analysis 2016-03, Vol.24 (1), p.13-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | Set-valued and variational analysis |
container_volume | 24 |
creator | Adly, Samir Hantoute, Abderrahim Le, Ba Khiet |
description | In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis. |
doi_str_mv | 10.1007/s11228-015-0334-7 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01313150v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01313150v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHbZsjB4_Mgky6pAixTBorC2HOPQVHlUdorUHdfgepwEV0FdolnMaPR_I81HyDWwW2AM7wIA5xlloCgTQlI8IRPIEClTEk6PsxDn5CKETUQYy2FC1HPfhbbvh3VS7PzP17dL7vedaWtrmmS1D4NrQ1J3ybJuSueHZLU11oVLclaZJrirvz4lb48Pr_MlLV4WT_NZQa1I1UBVlUrMOaQKZSkdlqmshFAcIAObYpkjtxZLhHeosDIqE7lwEliuUp5LYcWU3Ix316bRW1-3xu91b2q9nBX6sGMgYin2CTELY9b6PgTvqiMATB8c6dFRZJQ-ONIYGT4yIWa7D-f1pt_5Lr70D_QLZwRnPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</title><source>SpringerLink</source><creator>Adly, Samir ; Hantoute, Abderrahim ; Le, Ba Khiet</creator><creatorcontrib>Adly, Samir ; Hantoute, Abderrahim ; Le, Ba Khiet</creatorcontrib><description>In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis.</description><identifier>ISSN: 1877-0533</identifier><identifier>EISSN: 1877-0541</identifier><identifier>DOI: 10.1007/s11228-015-0334-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Optimization ; Optimization and Control</subject><ispartof>Set-valued and variational analysis, 2016-03, Vol.24 (1), p.13-35</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</citedby><cites>FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</cites><orcidid>0000-0002-4375-0106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11228-015-0334-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11228-015-0334-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01313150$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Adly, Samir</creatorcontrib><creatorcontrib>Hantoute, Abderrahim</creatorcontrib><creatorcontrib>Le, Ba Khiet</creatorcontrib><title>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</title><title>Set-valued and variational analysis</title><addtitle>Set-Valued Var. Anal</addtitle><description>In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Optimization and Control</subject><issn>1877-0533</issn><issn>1877-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHbZsjB4_Mgky6pAixTBorC2HOPQVHlUdorUHdfgepwEV0FdolnMaPR_I81HyDWwW2AM7wIA5xlloCgTQlI8IRPIEClTEk6PsxDn5CKETUQYy2FC1HPfhbbvh3VS7PzP17dL7vedaWtrmmS1D4NrQ1J3ybJuSueHZLU11oVLclaZJrirvz4lb48Pr_MlLV4WT_NZQa1I1UBVlUrMOaQKZSkdlqmshFAcIAObYpkjtxZLhHeosDIqE7lwEliuUp5LYcWU3Ix316bRW1-3xu91b2q9nBX6sGMgYin2CTELY9b6PgTvqiMATB8c6dFRZJQ-ONIYGT4yIWa7D-f1pt_5Lr70D_QLZwRnPw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Adly, Samir</creator><creator>Hantoute, Abderrahim</creator><creator>Le, Ba Khiet</creator><general>Springer Netherlands</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4375-0106</orcidid></search><sort><creationdate>20160301</creationdate><title>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</title><author>Adly, Samir ; Hantoute, Abderrahim ; Le, Ba Khiet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-5f6479216574b4e7b64f33521181c67b972cc7b71d1f7fa58393e4109562943c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adly, Samir</creatorcontrib><creatorcontrib>Hantoute, Abderrahim</creatorcontrib><creatorcontrib>Le, Ba Khiet</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Set-valued and variational analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adly, Samir</au><au>Hantoute, Abderrahim</au><au>Le, Ba Khiet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces</atitle><jtitle>Set-valued and variational analysis</jtitle><stitle>Set-Valued Var. Anal</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>24</volume><issue>1</issue><spage>13</spage><epage>35</epage><pages>13-35</pages><issn>1877-0533</issn><eissn>1877-0541</eissn><abstract>In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11228-015-0334-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-4375-0106</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-0533 |
ispartof | Set-valued and variational analysis, 2016-03, Vol.24 (1), p.13-35 |
issn | 1877-0533 1877-0541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01313150v1 |
source | SpringerLink |
subjects | Analysis Mathematics Mathematics and Statistics Optimization Optimization and Control |
title | Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsmooth%20Lur%E2%80%99e%20Dynamical%20Systems%20in%20Hilbert%20Spaces&rft.jtitle=Set-valued%20and%20variational%20analysis&rft.au=Adly,%20Samir&rft.date=2016-03-01&rft.volume=24&rft.issue=1&rft.spage=13&rft.epage=35&rft.pages=13-35&rft.issn=1877-0533&rft.eissn=1877-0541&rft_id=info:doi/10.1007/s11228-015-0334-7&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01313150v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |