Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces
In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term invo...
Gespeichert in:
Veröffentlicht in: | Set-valued and variational analysis 2016-03, Vol.24 (1), p.13-35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the well-posedness and stability analysis of set-valued Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and uniqueness results are established under the so-called passivity condition. Our approach uses a regularization procedure for the term involving the maximal monotone operator. The Lyapunov stability as well as the invariance properties are considered in detail. In addition, we give some sufficient conditions ensuring the robust stability of the system in finite-dimensional spaces. The theoretical developments are illustrated by means of two examples dealing with nonregular electrical circuits and an other one in partial differential equations. Our methodology is based on tools from set-valued and variational analysis. |
---|---|
ISSN: | 1877-0533 1877-0541 |
DOI: | 10.1007/s11228-015-0334-7 |