Continuous-Discrete Extended Kalman Filter on Matrix Lie Groups Using Concentrated Gaussian Distributions

In this paper we generalize the continuous-discrete extended Kalman filter (CD-EKF) to the case where the state and the observations evolve on connected unimodular matrix Lie groups. We propose a new assumed density filter called continuous-discrete extended Kalman filter on Lie groups (CD-LG-EKF)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2015-01, Vol.51 (1), p.209-228
Hauptverfasser: Bourmaud, Guillaume, Mégret, Rémi, Arnaudon, Marc, Giremus, Audrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we generalize the continuous-discrete extended Kalman filter (CD-EKF) to the case where the state and the observations evolve on connected unimodular matrix Lie groups. We propose a new assumed density filter called continuous-discrete extended Kalman filter on Lie groups (CD-LG-EKF). It is built upon a geometrically meaningful modeling of the concentrated Gaussian distribution on Lie groups. Such a distribution is parametrized by a mean and a covariance matrix defined on the Lie group and in its associated Lie algebra respectively. Our formalism yields tractable equations for both non-linear continuous time propagation and discrete update of the distribution parameters under the assumption that the posterior distribution of the state is a concentrated Gaussian. As a side effect, we contribute to the derivation of the first and second order differential of the matrix Lie group logarithm using left connection. We also show that the CD-LG-EKF reduces to the usual CD-EKF if the state and the observations evolve on Euclidean spaces. Our approach leads to a systematic methodology for the design of filters, which is illustrated by the application to a camera pose filtering problem with observations on Lie group. In this application, the CD-LG-EKF significantly outperforms two constrained non-linear filters (one based on a linearization technique and the other on the unscented transform) applied on the embedding space of the Lie group.
ISSN:0924-9907
1573-7683
DOI:10.1007/s10851-014-0517-0