An Eyring–Kramers law for the stochastic Allen–Cahn equation in dimension two

We study spectral Galerkin approximations of an Allen–Cahn equation over the two-dimensional torus perturbed by weak space-time white noise of strength √ ε. We introduce a Wick renormalisation of the equation in order to have a system that is well-defined as the regularisation is removed. We show sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2017-01, Vol.22 (none), p.1-27
Hauptverfasser: Berglund, Nils, Di Gesù, Giacomo, Weber, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study spectral Galerkin approximations of an Allen–Cahn equation over the two-dimensional torus perturbed by weak space-time white noise of strength √ ε. We introduce a Wick renormalisation of the equation in order to have a system that is well-defined as the regularisation is removed. We show sharp upper and lower bounds on the transition times from a neighbourhood of the stable configuration −1 to the stable configuration 1 in the asymptotic regime ε → 0. These estimates are uniform in the discretisation parameter N , suggesting an Eyring–Kramers formula for the limiting renormalised stochastic PDE. The effect of the " infinite renormalisation " is to modify the prefactor and to replace the ratio of determinants in the finite-dimensional Eyring– Kramers law by a renormalised Carleman–Fredholm determinant.
ISSN:1083-6489
1083-6489
DOI:10.1214/17-EJP60