Photoluminescence energy and linewidth in GaN/AlN stackings of quantum dot planes

We analyze the room temperature photoluminescence properties of several multilayer stackings of GaN/AlN quantum dots. We report drastic differences of emission energies and linewidths between continuous wave and time-resolved photoluminescence experiments. In continuous wave experiments, the screeni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2004-07, Vol.96 (1), p.180-185
Hauptverfasser: Kalliakos, S., Bretagnon, T., Lefebvre, P., Taliercio, T., Gil, B., Grandjean, N., Damilano, B., Dussaigne, A., Massies, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the room temperature photoluminescence properties of several multilayer stackings of GaN/AlN quantum dots. We report drastic differences of emission energies and linewidths between continuous wave and time-resolved photoluminescence experiments. In continuous wave experiments, the screening of internal electric fields by accumulation of e-h pairs in quantum dot planes induces a blue-shift as well as an unexpected narrowing of the emission line, when the laser intensity is increased. Under intense, pulsed excitation, in time-resolved photoluminescence, a substantial blue-shift is induced, due to the partial cancelation of the quantum confined Stark effect. When the system is again free to relax, we observe a time-dependent red-shift of the line, which maintains a fairly constant width. We attribute the observed behavior of energies and linewidths to the intricate contributions of the in-plane distribution of dot sizes and of the depth-dependent decrease of the degree of excitation of the different planes. We support our interpretations by the use of a model based on a self-consistent solution of the Schrödinger and Poisson equations within the envelope function approximation.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1753085