Epimorphisms of 3-manifold groups

Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the followi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2018-09, Vol.69 (3), p.931-942
Hauptverfasser: Boileau, Michel, Friedl, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 3
container_start_page 931
container_title Quarterly journal of mathematics
container_volume 69
creator Boileau, Michel
Friedl, Stefan
description Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the following holds: either for any finite-index subgroup Γ of π1(N) the ranks of Γ and of f⁎−1(Γ) agree, or for any finite cover N˜ of N the Heegaard genus of N˜ and the Heegaard genus of the pull-back cover M˜ agree.
doi_str_mv 10.1093/qmath/hay007
format Article
fullrecord <record><control><sourceid>oup_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01302580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/qmath/hay007</oup_id><sourcerecordid>10.1093/qmath/hay007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-a1cf9ee43b1e949ff90e9de6dd549a41d4bd598dfc46a0ba77ba4c2e1ef8be5d3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdvPkA9iWB2J5s0bY7LsroLBS96DtMmsZXW1GQV9u3tWvHoaeDnm_mZj5BrBnMGii8-etw3iwYPAPkJSZiQgvJC5KckAeCcZhLkObmI8Q2ASVHkCbnZDG3vw9C0sY-pdymnPb63zncmfQ3-c4iX5MxhF-3V75yRl4fN83pLy6fH3XpV0nqZFXuKrHbKWsErZpVQzimwylhpTCYUCmZEZTJVGFcLiVBhnlco6qVl1hWVzQyfkbvpboOdHkLbYzhoj63erkp9zIBxGKvgi43s_cTWwccYrPtbYKCPKvSPCj2pGPHbCR__-Z_8Bh5eYKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Epimorphisms of 3-manifold groups</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Boileau, Michel ; Friedl, Stefan</creator><creatorcontrib>Boileau, Michel ; Friedl, Stefan</creatorcontrib><description>Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the following holds: either for any finite-index subgroup Γ of π1(N) the ranks of Γ and of f⁎−1(Γ) agree, or for any finite cover N˜ of N the Heegaard genus of N˜ and the Heegaard genus of the pull-back cover M˜ agree.</description><identifier>ISSN: 0033-5606</identifier><identifier>EISSN: 1464-3847</identifier><identifier>DOI: 10.1093/qmath/hay007</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Geometric Topology ; Mathematics</subject><ispartof>Quarterly journal of mathematics, 2018-09, Vol.69 (3), p.931-942</ispartof><rights>The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-a1cf9ee43b1e949ff90e9de6dd549a41d4bd598dfc46a0ba77ba4c2e1ef8be5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01302580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boileau, Michel</creatorcontrib><creatorcontrib>Friedl, Stefan</creatorcontrib><title>Epimorphisms of 3-manifold groups</title><title>Quarterly journal of mathematics</title><description>Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the following holds: either for any finite-index subgroup Γ of π1(N) the ranks of Γ and of f⁎−1(Γ) agree, or for any finite cover N˜ of N the Heegaard genus of N˜ and the Heegaard genus of the pull-back cover M˜ agree.</description><subject>Geometric Topology</subject><subject>Mathematics</subject><issn>0033-5606</issn><issn>1464-3847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdvPkA9iWB2J5s0bY7LsroLBS96DtMmsZXW1GQV9u3tWvHoaeDnm_mZj5BrBnMGii8-etw3iwYPAPkJSZiQgvJC5KckAeCcZhLkObmI8Q2ASVHkCbnZDG3vw9C0sY-pdymnPb63zncmfQ3-c4iX5MxhF-3V75yRl4fN83pLy6fH3XpV0nqZFXuKrHbKWsErZpVQzimwylhpTCYUCmZEZTJVGFcLiVBhnlco6qVl1hWVzQyfkbvpboOdHkLbYzhoj63erkp9zIBxGKvgi43s_cTWwccYrPtbYKCPKvSPCj2pGPHbCR__-Z_8Bh5eYKQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Boileau, Michel</creator><creator>Friedl, Stefan</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20180901</creationdate><title>Epimorphisms of 3-manifold groups</title><author>Boileau, Michel ; Friedl, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-a1cf9ee43b1e949ff90e9de6dd549a41d4bd598dfc46a0ba77ba4c2e1ef8be5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Geometric Topology</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boileau, Michel</creatorcontrib><creatorcontrib>Friedl, Stefan</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Quarterly journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boileau, Michel</au><au>Friedl, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epimorphisms of 3-manifold groups</atitle><jtitle>Quarterly journal of mathematics</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>69</volume><issue>3</issue><spage>931</spage><epage>942</epage><pages>931-942</pages><issn>0033-5606</issn><eissn>1464-3847</eissn><abstract>Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the following holds: either for any finite-index subgroup Γ of π1(N) the ranks of Γ and of f⁎−1(Γ) agree, or for any finite cover N˜ of N the Heegaard genus of N˜ and the Heegaard genus of the pull-back cover M˜ agree.</abstract><pub>Oxford University Press</pub><doi>10.1093/qmath/hay007</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-5606
ispartof Quarterly journal of mathematics, 2018-09, Vol.69 (3), p.931-942
issn 0033-5606
1464-3847
language eng
recordid cdi_hal_primary_oai_HAL_hal_01302580v1
source Oxford University Press Journals All Titles (1996-Current)
subjects Geometric Topology
Mathematics
title Epimorphisms of 3-manifold groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A22%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epimorphisms%20of%203-manifold%20groups&rft.jtitle=Quarterly%20journal%20of%20mathematics&rft.au=Boileau,%20Michel&rft.date=2018-09-01&rft.volume=69&rft.issue=3&rft.spage=931&rft.epage=942&rft.pages=931-942&rft.issn=0033-5606&rft.eissn=1464-3847&rft_id=info:doi/10.1093/qmath/hay007&rft_dat=%3Coup_hal_p%3E10.1093/qmath/hay007%3C/oup_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/qmath/hay007&rfr_iscdi=true