Epimorphisms of 3-manifold groups

Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the followi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2018-09, Vol.69 (3), p.931-942
Hauptverfasser: Boileau, Michel, Friedl, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the following holds: either for any finite-index subgroup Γ of π1(N) the ranks of Γ and of f⁎−1(Γ) agree, or for any finite cover N˜ of N the Heegaard genus of N˜ and the Heegaard genus of the pull-back cover M˜ agree.
ISSN:0033-5606
1464-3847
DOI:10.1093/qmath/hay007