Epimorphisms of 3-manifold groups
Abstract Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the followi...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of mathematics 2018-09, Vol.69 (3), p.931-942 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let f:M→N be a proper map between two aspherical compact orientable 3-manifolds with empty or toroidal boundary. We assume that N is not a closed graph manifold. Suppose that f induces an epimorphism on fundamental groups. We show that f is homotopic to a homeomorphism if one of the following holds: either for any finite-index subgroup Γ of π1(N) the ranks of Γ and of f⁎−1(Γ) agree, or for any finite cover N˜ of N the Heegaard genus of N˜ and the Heegaard genus of the pull-back cover M˜ agree. |
---|---|
ISSN: | 0033-5606 1464-3847 |
DOI: | 10.1093/qmath/hay007 |