Highly rotating viscous compressible fluids in presence of capillarity effects

We study here a singular limit problem for a Navier–Stokes–Korteweg system with Coriolis force, in the domain R 2 × ] 0 , 1 [ and for general ill-prepared initial data. Taking the Mach and the Rossby numbers proportional to a small parameter ε → 0 , we perform the incompressible and high rotation li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2016-12, Vol.366 (3-4), p.981-1033
1. Verfasser: Fanelli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study here a singular limit problem for a Navier–Stokes–Korteweg system with Coriolis force, in the domain R 2 × ] 0 , 1 [ and for general ill-prepared initial data. Taking the Mach and the Rossby numbers proportional to a small parameter ε → 0 , we perform the incompressible and high rotation limits simultaneously; moreover, we consider both the constant and vanishing capillarity regimes. In this last case, the limit problem is identified as a 2-D incompressible Navier–Stokes equation in the variables orthogonal to the rotation axis; if the capillarity is constant, instead, the limit equation slightly changes, keeping however a similar structure, due to the presence of an additional surface tension term. In the vanishing capillarity regime, various rates at which the capillarity coefficient goes to 0 are considered: in general, this produces an anisotropic scaling in the system. The proof of the results is based on suitable applications of the RAGE theorem, combined with microlocal symmetrization arguments.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-015-1358-x