Sur l'existence du schéma en groupes fondamental
Let $S$ be a Dedekind scheme, $X$ a $S$-scheme of finite type and $x\in X(S)$ a section. We prove the existence of the fundamental group scheme of $X$ at $x$ which classifies all the finite torsors over $X$, pointed over $x$ when $X$ has reduced fibers or when $X$ is normal. We also prove the existe...
Gespeichert in:
Veröffentlicht in: | Épijournal de géométrie algébrique 2020, Vol.4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $S$ be a Dedekind scheme, $X$ a $S$-scheme of finite type and $x\in X(S)$ a section. We prove the existence of the fundamental group scheme of $X$ at $x$ which classifies all the finite torsors over $X$, pointed over $x$ when $X$ has reduced fibers or when $X$ is normal. We also prove the existence of a group scheme, that we will call the quasi-finite fundamental group scheme of $X$ at $x$, which classifies all the quasi-finite torsors over $X$, pointed over $x$. We define Galois torsors, which play in this context a role similar to the one of connected Galois covers in the theory of \'etale fundamental group ; we study their properties. |
---|---|
ISSN: | 2491-6765 2491-6765 |
DOI: | 10.46298/epiga.2020.volume4.5436 |