Effect of self-interaction on the phase diagram of a Gibbs-like measure derived by a reversible Probabilistic Cellular Automata

Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains on lattice with finite single-cell s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals solitons and fractals, 2014-07, Vol.64, p.36-47
Hauptverfasser: Cirillo, Emilio N.M., Louis, Pierre-Yves, Ruszel, Wioletta M., Spitoni, Cristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellular Automata are discrete-time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains on lattice with finite single-cell states whose distinguishing feature is the parallel character of the updating rule. We study the ground states of the Hamiltonian and the low-temperature phase diagram of the related Gibbs measure naturally associated with a class of reversible PCA, called the cross PCA. In such a model the updating rule of a cell depends indeed only on the status of the five cells forming a cross centered at the original cell itself. In particular, it depends on the value of the center spin (self-interaction). The goal of the paper is that of investigating the role played by the self-interaction parameter in connection with the ground states of the Hamiltonian and the low-temperature phase diagram of the Gibbs measure associated with this particular PCA.
ISSN:0960-0779
1873-2887
DOI:10.1016/j.chaos.2013.12.001