A p-Laplacian approximation for some mass optimization problems

We show that the problem of finding the best mass distribution, in both the conductivity and elasticity cases, can be approximated by means of solutions of a p-Laplace equation as p[arrow right]+∞. This seems to provide a selection criterion when the optimal solutions are nonunique.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2003-07, Vol.118 (1), p.1-25
Hauptverfasser: BOUCHITTE, G, BUTTAZZO, G, DE PASCALE, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the problem of finding the best mass distribution, in both the conductivity and elasticity cases, can be approximated by means of solutions of a p-Laplace equation as p[arrow right]+∞. This seems to provide a selection criterion when the optimal solutions are nonunique.
ISSN:0022-3239
1573-2878
DOI:10.1023/a:1024751022715