A New$L^{\infty}$Estimate in Optimal Mass Transport

Let Ω be a bounded Lipschitz regular open subset of ${\Bbb R}^{d}$ and let μ, ν be two probability measures on $\overline{\Omega}$ . It is well known that if μ = f dx is absolutely continuous, then there exists, for every p > 1, a unique transport map $T_{p}$ pushing forward μ on ν and which real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2007-11, Vol.135 (11), p.3525-3535
Hauptverfasser: Bouchitté, G., Jimenez, C., Rajesh, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be a bounded Lipschitz regular open subset of ${\Bbb R}^{d}$ and let μ, ν be two probability measures on $\overline{\Omega}$ . It is well known that if μ = f dx is absolutely continuous, then there exists, for every p > 1, a unique transport map $T_{p}$ pushing forward μ on ν and which realizes the Monge-Kantorovich distance $W_{p}(\mu,\nu)$ . In this paper, we establish an $L^{\infty}$ bound for the displacement map $T_{p}x-x$ which depends only on p, on the shape of Ω and on the essential infimum of the density f.
ISSN:0002-9939
1088-6826
DOI:10.1090/S0002-9939-07-08877-6