A New$L^{\infty}$Estimate in Optimal Mass Transport
Let Ω be a bounded Lipschitz regular open subset of ${\Bbb R}^{d}$ and let μ, ν be two probability measures on $\overline{\Omega}$ . It is well known that if μ = f dx is absolutely continuous, then there exists, for every p > 1, a unique transport map $T_{p}$ pushing forward μ on ν and which real...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2007-11, Vol.135 (11), p.3525-3535 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω be a bounded Lipschitz regular open subset of ${\Bbb R}^{d}$ and let μ, ν be two probability measures on $\overline{\Omega}$ . It is well known that if μ = f dx is absolutely continuous, then there exists, for every p > 1, a unique transport map $T_{p}$ pushing forward μ on ν and which realizes the Monge-Kantorovich distance $W_{p}(\mu,\nu)$ . In this paper, we establish an $L^{\infty}$ bound for the displacement map $T_{p}x-x$ which depends only on p, on the shape of Ω and on the essential infimum of the density f. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/S0002-9939-07-08877-6 |