Homogenization of Maxwell's Equations in a Split Ring Geometry

We analyze the time harmonic Maxwell equations in a complex three-dimensional geometry. The scatterer Ω ∈ R^sup 3^ contains a periodic pattern of small wire structures of high conductivity, and the single element has the shape of a split ring. We rigorously derive effective equations for the scatter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale modeling & simulation 2010-01, Vol.8 (3), p.717-750
Hauptverfasser: Bouchitté, Guy, Schweizer, Ben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the time harmonic Maxwell equations in a complex three-dimensional geometry. The scatterer Ω ∈ R^sup 3^ contains a periodic pattern of small wire structures of high conductivity, and the single element has the shape of a split ring. We rigorously derive effective equations for the scatterer and provide formulas for the effective permittivity and permeability. The latter turns out to be frequency dependent and has a negative real part for appropriate parameter values. This magnetic activity is the key feature of a left-handed metamaterial. [PUBLICATION ABSTRACT]
ISSN:1540-3459
1540-3467
DOI:10.1137/09074557x