Homogenization of Maxwell's Equations in a Split Ring Geometry
We analyze the time harmonic Maxwell equations in a complex three-dimensional geometry. The scatterer Ω ∈ R^sup 3^ contains a periodic pattern of small wire structures of high conductivity, and the single element has the shape of a split ring. We rigorously derive effective equations for the scatter...
Gespeichert in:
Veröffentlicht in: | Multiscale modeling & simulation 2010-01, Vol.8 (3), p.717-750 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the time harmonic Maxwell equations in a complex three-dimensional geometry. The scatterer Ω ∈ R^sup 3^ contains a periodic pattern of small wire structures of high conductivity, and the single element has the shape of a split ring. We rigorously derive effective equations for the scatterer and provide formulas for the effective permittivity and permeability. The latter turns out to be frequency dependent and has a negative real part for appropriate parameter values. This magnetic activity is the key feature of a left-handed metamaterial. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1540-3459 1540-3467 |
DOI: | 10.1137/09074557x |