Laguerre semigroup and Dunkl operators

We construct a two-parameter family of actions ωk,a of the Lie algebra (2,ℝ) by differential–difference operators on ℝN∖{0}. Here k is a multiplicity function for the Dunkl operators, and a>0 arises from the interpolation of the two (2,ℝ) actions on the Weil representation of Mp(N,ℝ) and the mini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2012-07, Vol.148 (4), p.1265-1336
Hauptverfasser: Saïd, Salem Ben, Kobayashi, Toshiyuki, Ørsted, Bent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a two-parameter family of actions ωk,a of the Lie algebra (2,ℝ) by differential–difference operators on ℝN∖{0}. Here k is a multiplicity function for the Dunkl operators, and a>0 arises from the interpolation of the two (2,ℝ) actions on the Weil representation of Mp(N,ℝ) and the minimal unitary representation of O(N+1,2). We prove that this action ωk,a lifts to a unitary representation of the universal covering of SL (2,ℝ) , and can even be extended to a holomorphic semigroup Ωk,a. In the k≡0 case, our semigroup generalizes the Hermite semigroup studied by R. Howe (a=2) and the Laguerre semigroup studied by the second author with G. Mano (a=1) . One boundary value of our semigroup Ωk,a provides us with (k,a) -generalized Fourier transforms ℱk,a, which include the Dunkl transform k (a=2) and a new unitary operator ℋk  (a=1) , namely a Dunkl–Hankel transform. We establish the inversion formula, a generalization of the Plancherel theorem, the Hecke identity, the Bochner identity, and a Heisenberg uncertainty relation for ℱk,a. We also find kernel functions for Ωk,a and ℱk,a for a=1,2 in terms of Bessel functions and the Dunkl intertwining operator.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X11007445