Sur les processus arithmétiques liés aux diviseurs
For natural integer n, let Dn denote the random variable taking the values log d for ddividing n with uniform probability 1/τ(n). Then t → P(Dn nt ) (0 t 1) is anarithmetic process with respect to the uniform probability over the first N integers. It isknown from previous works that this process con...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2016-07, Vol.48 (A), p.63-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For natural integer n, let Dn denote the random variable taking the values log d for ddividing n with uniform probability 1/τ(n). Then t → P(Dn nt ) (0 t 1) is anarithmetic process with respect to the uniform probability over the first N integers. It isknown from previous works that this process converges to a limit law and that the sameholds for various extensions. We investigate the generalized moments of arbitrary ordersfor the limit laws. We also evaluate the mean value of the two-dimensional distributionfunction P(Dn nu, D{n/Dn} nv). |
---|---|
ISSN: | 0001-8678 1475-6064 |
DOI: | 10.1017/apr.2016.42 |