Sur les processus arithmétiques liés aux diviseurs

For natural integer n, let Dn denote the random variable taking the values log d for ddividing n with uniform probability 1/τ(n). Then t → P(Dn nt ) (0 t 1) is anarithmetic process with respect to the uniform probability over the first N integers. It isknown from previous works that this process con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2016-07, Vol.48 (A), p.63-76
Hauptverfasser: de la Bretèche, R, Tenenbaum, G
Format: Artikel
Sprache:fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For natural integer n, let Dn denote the random variable taking the values log d for ddividing n with uniform probability 1/τ(n). Then t → P(Dn nt ) (0 t 1) is anarithmetic process with respect to the uniform probability over the first N integers. It isknown from previous works that this process converges to a limit law and that the sameholds for various extensions. We investigate the generalized moments of arbitrary ordersfor the limit laws. We also evaluate the mean value of the two-dimensional distributionfunction P(Dn nu, D{n/Dn} nv).
ISSN:0001-8678
1475-6064
DOI:10.1017/apr.2016.42