Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators

We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2014-08, Vol.55 (8), p.1
Hauptverfasser: Combes, Jean-Michel, Germinet, François, Klein, Abel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1
container_title Journal of mathematical physics
container_volume 55
creator Combes, Jean-Michel
Germinet, François
Klein, Abel
description We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.
doi_str_mv 10.1063/1.4893337
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01277747v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3424223041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-260992d15e111668390e5494990c0391c10d755f5e1682b36a18790634f9e7b63</originalsourceid><addsrcrecordid>eNp9UU1LAzEUDKJgrR78BwFPHrbmJdl8HEtRKyx4UPEY0t1su6XdrEkq1B_mH_CPuaWl3jw9eDPMvHmD0DWQERDB7mDElWaMyRM0AKJ0JkWuTtGAEEozypU6RxcxLgkBUJwPUFf40q7wu5u3LmDbVrho6rho0hdOtllF7GJq1ja5iGsfcFo4XLk2NmmLfY1jOiKlb1PTbvwm4tDL-DV-KRfh57tq2nmv7DsXbPIhXqKz2q6iuzrMIXp7uH-dTLPi-fFpMi6ykgFPGRVEa1pB7gBACMU0cTnXXGtSEqahBFLJPK97XCg6Y8KCkrr_AK-1kzPBhuh2r7uwK9OFPkPYGm8bMx0XZrcjQKWUXH5Cz73Zc7vgPzZ9YrP0m9D25xkKVORCMJb_x4JcECapJvTPtww-xuDqozkQs6vIgDlUxH4B7vWBMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560372902</pqid></control><display><type>article</type><title>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Combes, Jean-Michel ; Germinet, François ; Klein, Abel</creator><creatorcontrib>Combes, Jean-Michel ; Germinet, François ; Klein, Abel</creatorcontrib><description>We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4893337</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Density ; Density of states ; Estimates ; Independent variables ; Mathematical Physics ; Operators (mathematics) ; Physics ; Quantum physics ; Random variables ; Schrodinger equation ; Upper bounds</subject><ispartof>Journal of mathematical physics, 2014-08, Vol.55 (8), p.1</ispartof><rights>Copyright American Institute of Physics Aug 2014</rights><rights>2014 AIP Publishing LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-260992d15e111668390e5494990c0391c10d755f5e1682b36a18790634f9e7b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01277747$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Combes, Jean-Michel</creatorcontrib><creatorcontrib>Germinet, François</creatorcontrib><creatorcontrib>Klein, Abel</creatorcontrib><title>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</title><title>Journal of mathematical physics</title><description>We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.</description><subject>Density</subject><subject>Density of states</subject><subject>Estimates</subject><subject>Independent variables</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Random variables</subject><subject>Schrodinger equation</subject><subject>Upper bounds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LAzEUDKJgrR78BwFPHrbmJdl8HEtRKyx4UPEY0t1su6XdrEkq1B_mH_CPuaWl3jw9eDPMvHmD0DWQERDB7mDElWaMyRM0AKJ0JkWuTtGAEEozypU6RxcxLgkBUJwPUFf40q7wu5u3LmDbVrho6rho0hdOtllF7GJq1ja5iGsfcFo4XLk2NmmLfY1jOiKlb1PTbvwm4tDL-DV-KRfh57tq2nmv7DsXbPIhXqKz2q6iuzrMIXp7uH-dTLPi-fFpMi6ykgFPGRVEa1pB7gBACMU0cTnXXGtSEqahBFLJPK97XCg6Y8KCkrr_AK-1kzPBhuh2r7uwK9OFPkPYGm8bMx0XZrcjQKWUXH5Cz73Zc7vgPzZ9YrP0m9D25xkKVORCMJb_x4JcECapJvTPtww-xuDqozkQs6vIgDlUxH4B7vWBMA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Combes, Jean-Michel</creator><creator>Germinet, François</creator><creator>Klein, Abel</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20140801</creationdate><title>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</title><author>Combes, Jean-Michel ; Germinet, François ; Klein, Abel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-260992d15e111668390e5494990c0391c10d755f5e1682b36a18790634f9e7b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Density</topic><topic>Density of states</topic><topic>Estimates</topic><topic>Independent variables</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Random variables</topic><topic>Schrodinger equation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combes, Jean-Michel</creatorcontrib><creatorcontrib>Germinet, François</creatorcontrib><creatorcontrib>Klein, Abel</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Combes, Jean-Michel</au><au>Germinet, François</au><au>Klein, Abel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</atitle><jtitle>Journal of mathematical physics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>55</volume><issue>8</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4893337</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2014-08, Vol.55 (8), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_hal_primary_oai_HAL_hal_01277747v1
source AIP Journals Complete; Alma/SFX Local Collection
subjects Density
Density of states
Estimates
Independent variables
Mathematical Physics
Operators (mathematics)
Physics
Quantum physics
Random variables
Schrodinger equation
Upper bounds
title Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Wegner%20and%20Lifshitz%20tails%20estimates%20for%20the%20density%20of%20states%20for%20continuous%20random%20Schr%C3%B6dinger%20operators&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Combes,%20Jean-Michel&rft.date=2014-08-01&rft.volume=55&rft.issue=8&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4893337&rft_dat=%3Cproquest_hal_p%3E3424223041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560372902&rft_id=info:pmid/&rfr_iscdi=true