Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators
We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2014-08, Vol.55 (8), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Journal of mathematical physics |
container_volume | 55 |
creator | Combes, Jean-Michel Germinet, François Klein, Abel |
description | We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states. |
doi_str_mv | 10.1063/1.4893337 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01277747v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3424223041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-260992d15e111668390e5494990c0391c10d755f5e1682b36a18790634f9e7b63</originalsourceid><addsrcrecordid>eNp9UU1LAzEUDKJgrR78BwFPHrbmJdl8HEtRKyx4UPEY0t1su6XdrEkq1B_mH_CPuaWl3jw9eDPMvHmD0DWQERDB7mDElWaMyRM0AKJ0JkWuTtGAEEozypU6RxcxLgkBUJwPUFf40q7wu5u3LmDbVrho6rho0hdOtllF7GJq1ja5iGsfcFo4XLk2NmmLfY1jOiKlb1PTbvwm4tDL-DV-KRfh57tq2nmv7DsXbPIhXqKz2q6iuzrMIXp7uH-dTLPi-fFpMi6ykgFPGRVEa1pB7gBACMU0cTnXXGtSEqahBFLJPK97XCg6Y8KCkrr_AK-1kzPBhuh2r7uwK9OFPkPYGm8bMx0XZrcjQKWUXH5Cz73Zc7vgPzZ9YrP0m9D25xkKVORCMJb_x4JcECapJvTPtww-xuDqozkQs6vIgDlUxH4B7vWBMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560372902</pqid></control><display><type>article</type><title>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Combes, Jean-Michel ; Germinet, François ; Klein, Abel</creator><creatorcontrib>Combes, Jean-Michel ; Germinet, François ; Klein, Abel</creatorcontrib><description>We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4893337</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Density ; Density of states ; Estimates ; Independent variables ; Mathematical Physics ; Operators (mathematics) ; Physics ; Quantum physics ; Random variables ; Schrodinger equation ; Upper bounds</subject><ispartof>Journal of mathematical physics, 2014-08, Vol.55 (8), p.1</ispartof><rights>Copyright American Institute of Physics Aug 2014</rights><rights>2014 AIP Publishing LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-260992d15e111668390e5494990c0391c10d755f5e1682b36a18790634f9e7b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01277747$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Combes, Jean-Michel</creatorcontrib><creatorcontrib>Germinet, François</creatorcontrib><creatorcontrib>Klein, Abel</creatorcontrib><title>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</title><title>Journal of mathematical physics</title><description>We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.</description><subject>Density</subject><subject>Density of states</subject><subject>Estimates</subject><subject>Independent variables</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Random variables</subject><subject>Schrodinger equation</subject><subject>Upper bounds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UU1LAzEUDKJgrR78BwFPHrbmJdl8HEtRKyx4UPEY0t1su6XdrEkq1B_mH_CPuaWl3jw9eDPMvHmD0DWQERDB7mDElWaMyRM0AKJ0JkWuTtGAEEozypU6RxcxLgkBUJwPUFf40q7wu5u3LmDbVrho6rho0hdOtllF7GJq1ja5iGsfcFo4XLk2NmmLfY1jOiKlb1PTbvwm4tDL-DV-KRfh57tq2nmv7DsXbPIhXqKz2q6iuzrMIXp7uH-dTLPi-fFpMi6ykgFPGRVEa1pB7gBACMU0cTnXXGtSEqahBFLJPK97XCg6Y8KCkrr_AK-1kzPBhuh2r7uwK9OFPkPYGm8bMx0XZrcjQKWUXH5Cz73Zc7vgPzZ9YrP0m9D25xkKVORCMJb_x4JcECapJvTPtww-xuDqozkQs6vIgDlUxH4B7vWBMA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Combes, Jean-Michel</creator><creator>Germinet, François</creator><creator>Klein, Abel</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20140801</creationdate><title>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</title><author>Combes, Jean-Michel ; Germinet, François ; Klein, Abel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-260992d15e111668390e5494990c0391c10d755f5e1682b36a18790634f9e7b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Density</topic><topic>Density of states</topic><topic>Estimates</topic><topic>Independent variables</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Random variables</topic><topic>Schrodinger equation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Combes, Jean-Michel</creatorcontrib><creatorcontrib>Germinet, François</creatorcontrib><creatorcontrib>Klein, Abel</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Combes, Jean-Michel</au><au>Germinet, François</au><au>Klein, Abel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators</atitle><jtitle>Journal of mathematical physics</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>55</volume><issue>8</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><abstract>We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4893337</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2014-08, Vol.55 (8), p.1 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01277747v1 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Density Density of states Estimates Independent variables Mathematical Physics Operators (mathematics) Physics Quantum physics Random variables Schrodinger equation Upper bounds |
title | Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Wegner%20and%20Lifshitz%20tails%20estimates%20for%20the%20density%20of%20states%20for%20continuous%20random%20Schr%C3%B6dinger%20operators&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Combes,%20Jean-Michel&rft.date=2014-08-01&rft.volume=55&rft.issue=8&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft_id=info:doi/10.1063/1.4893337&rft_dat=%3Cproquest_hal_p%3E3424223041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560372902&rft_id=info:pmid/&rfr_iscdi=true |