Local Wegner and Lifshitz tails estimates for the density of states for continuous random Schrödinger operators

We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2014-08, Vol.55 (8), p.1
Hauptverfasser: Combes, Jean-Michel, Germinet, François, Klein, Abel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and prove local Wegner estimates for continuous generalized Anderson Hamiltonians, where the single-site random variables are independent but not necessarily identically distributed. In particular, we get Wegner estimates with a constant that goes to zero as we approach the bottom of the spectrum. As an application, we show that the (differentiated) density of states exhibits the same Lifshitz tails upper bound as the integrated density of states.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4893337