Cauchy means of Dirichlet polynomials
We study Cauchy means of Dirichlet polynomials ∫R|∑n=1N1nσ+ist|2qdtπ(t2+1). These integrals were investigated when q=1,σ=1,s=1/2 by Wilf, using integral operator theory and Widom’s eigenvalue estimates. We show the optimality of some upper bounds obtained by Wilf. We also obtain new estimates for th...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 2016-04, Vol.204, p.61-79 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Cauchy means of Dirichlet polynomials ∫R|∑n=1N1nσ+ist|2qdtπ(t2+1). These integrals were investigated when q=1,σ=1,s=1/2 by Wilf, using integral operator theory and Widom’s eigenvalue estimates. We show the optimality of some upper bounds obtained by Wilf. We also obtain new estimates for the case q≥1, σ≥0 and s>0. We complete Wilf’s approach by relating it with other approaches (having notably connection with Brownian motion), allowing simple proofs, and also prove new results. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1016/j.jat.2016.01.001 |