An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function
Given a periodic function f, we study the convergence almost everywhere and in norm of the series ∑kckf(kx). Let f(x)=∑m=1∞amsin2πmx where ∑m=1∞am2d(m)1/2, by only using elementary Dirichlet convolution calculus, we show that for 0
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2016-05, Vol.162, p.137-179 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a periodic function f, we study the convergence almost everywhere and in norm of the series ∑kckf(kx). Let f(x)=∑m=1∞amsin2πmx where ∑m=1∞am2d(m)1/2, by only using elementary Dirichlet convolution calculus, we show that for 0 |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1016/j.jnt.2015.10.002 |