An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function

Given a periodic function f, we study the convergence almost everywhere and in norm of the series ∑kckf(kx). Let f(x)=∑m=1∞amsin⁡2πmx where ∑m=1∞am2d(m)1/2, by only using elementary Dirichlet convolution calculus, we show that for 0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of number theory 2016-05, Vol.162, p.137-179
1. Verfasser: Weber, Michel J.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a periodic function f, we study the convergence almost everywhere and in norm of the series ∑kckf(kx). Let f(x)=∑m=1∞amsin⁡2πmx where ∑m=1∞am2d(m)1/2, by only using elementary Dirichlet convolution calculus, we show that for 0
ISSN:0022-314X
1096-1658
DOI:10.1016/j.jnt.2015.10.002